TY - JOUR A1 - Giovannelli, F. A1 - Chen, Cong A1 - Díaz-Chao, P. A1 - Guilmeau, E. A1 - Delorme, F. T1 - Thermal conductivity and stability of Al-doped ZnO nanostructured ceramics N2 - Pure and Al-doped ZnO powders have been sintered by Spark Plasma Sintering. Al doping allows the ceramics to reach a relative density greater than 90% at a sintering temperature of 500°C. The morphology of powder nanoparticles impacts the final grain size of the sintered bulk compounds. A ceramic sintered from isotropic nanoparticles of 30 nm in diameter can reach an average grain size of 110 nm, whereas a ceramic sintered from platelets and isotropic nanoparticles exhibits an average grain size in the submicrometric range. The influence of ceramic grain size on the thermal conductivity has been investigated. It shows that substantial decrease of the grain size from several microns down to 100 nm reduces the thermal conductivity from 29.5 to 7.8 W/m K at 100°C. The stability of nanostructured ceramic has also been checked. After SPS, an annealing at 500°C in air also leads to grain growth. KW - Spark plasma sintering KW - Oxide KW - Thermal conductivity KW - Nanostructuring PY - 2018 U6 - https://doi.org/10.1016/j.jeurceramsoc.2018.07.032 SN - 0955-2219 VL - 38 IS - 15 SP - 5015 EP - 5020 PB - Elsevier Science CY - Amsterdam AN - OPUS4-45740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Cong A1 - Giovannelli, F. A1 - Delorme, F. T1 - Thermoelectric properties of Fe2-xTi1+xO5 solid solutions: Influence of microcracking and Nb substitution N2 - The synthesis route and thermoelectric characterization of n-type Fe2-xTi1+xO5 (0 ≤ x ≤ 0.5) and Fe1.75(Ti1-yNby)1.25O5 (0 ≤ y ≤ 0.05) are presented. Their electrical conductivity obeys the small polaron model and their Seebeck coefficient is weakly dependent on temperature. The carrier concentration is increased with increasing Ti content in Fe2-xTi1+xO5, thus improving the electrical conductivity and decreasing the absolute values of the Seebeck coefficient. The composition with x = 0.5 shows reduced electrical conductivity contradicting the change in the carrier concentration, as it contains more microcracks than the other compositions. Fe2-xTi1+xO5 exhibits extremely low thermal conductivity. Fe2-xTi1+xO5 with x = 0.25 exhibits the highest ZT, ~ 0.014 at 1000 K. Therefore, a limited extent microcracks are beneficial to thermoelectric properties; however, when they are too extended they can be detrimental. On the contrary to Fe2TiO5, Nb substitution into Fe1.75Ti1.25O5 does not obviously improve its thermoelectric properties. KW - Thermoelectric KW - Pseudobrookite KW - Fe2TiO5 PY - 2018 U6 - https://doi.org/10.1016/j.ceramint.2018.08.282 SN - 0272-8842 SN - 1873-3956 VL - 44 IS - 17 SP - 21794 EP - 21799 PB - Elsevier CY - Amsterdam AN - OPUS4-46299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Delorme, F. A1 - Chen, C. A1 - Bektas, M. A1 - Moos, R. A1 - Rabe, Torsten T1 - Influence of Reaction-Sintering and Calcination Conditions on Thermoelectric Properties of Sm-doped Calcium Manganate CaMnO3 N2 - A wide range of solid-state synthesis routes for calcium manganate is reported in the literature, but there is no systematic study about the influence of the solid-state synthesis conditions on thermoelectric properties. Therefore, this study examined the influence of calcination temperature and calcination cycles on the Seebeck coefficient, electrical conductivity, and thermal conductivity. Higher calcination temperatures and repeated calcination cycles minimized the driving force for sintering of the synthesized powder, leading to smaller shrinkage and lower densities of the sintered specimens. As the electrical conductivity increased monotonously with increasing density, a higher energy input during calcination caused deterioration of electrical conductivity. Phase composition and Seebeck coefficient of sintered calcium manganate were not influenced by the calcination procedure. The highest thermoelectric properties with the highest power factors and figures of merit were obtained by means of reaction-sintering of uncalcined powder. KW - Thermoelectric oxides KW - Calcination KW - Solid-state-synthesis KW - Power factor KW - Reaction-sintering PY - 2018 U6 - https://doi.org/10.4416/JCST2018-00017 SN - 2190-9385 VL - 9 IS - 3 SP - 289 EP - 300 PB - Göller Verlag AN - OPUS4-46224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Cong A1 - Bousnina, M. A1 - Giovannelli, F. A1 - Delorme, F. T1 - Influence of Bi on the thermoelectric properties of SrTiO3-δ N2 - The thermoelectric properties of Sr1-xBixTiO3-δ (0 ≤ x ≤ 0.07) have been investigated. Dense ceramics of Sr1-xBixTiO3-δ and Sr0.95TiO3-δ have been prepared by solid-state reaction and conventional sintering in air followed by annealing in a reducing atmosphere. XRD and SEM analyses show that the rutile TiO2 in Sr0.95TiO3 formed after sintering becomes Magnéli phase of TinO2n-1 after annealing. Moreover, Bi resolves from Sr1-xBixTiO3 after annealing, resulting in the formation of Sr1-xBixTiO3-δ/Bi/TinO2n-1 composites. With increasing Bi content in Sr1-xBixTiO3-δ, the electrical conductivity increases while the absolute values of the Seebeck coefficient decrease as a result of increasing carrier concentration. The thermal conductivity of SrTiO3-δ is reduced by doping Bi up to x = 0.07. Highest ZT ~ 0.13 is obtained in Sr0.93Bi0.07TiO3-δ at 1000 K. KW - Thermoelectrics KW - SrTiO3 KW - Composite KW - Magnéli phase PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-472920 SN - 2352-8478 VL - 5 IS - 1 SP - 88 EP - 93 PB - Elsevier AN - OPUS4-47292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Cong A1 - Müller, Bernd R. A1 - Lebedev, O. A1 - Giovannelli, F. A1 - Bruno, Giovanni A1 - Delorme, F. T1 - Effects of impurities on the stability of the low thermal conductivity in Fe2TiO5 ceramics N2 - The stability of the low thermal conductivity in Fe2TiO5 pseudobrookite ceramics has been studied. An increase in thermal diffusivity is observed after only three cycles of measurement. X-ray refraction shows an increase in the mean value of specific surface after the thermal diffusivity measurements. By using scanning electron microscopy and high‐angle annular dark‐field scanning transmission electron microscope equipped with energy dispersive X-ray spectroscopy, we observe a segregation of Ca- and F-rich nanocrystals at grain boundaries after three cycles of thermal diffusivity measurement. Therefore, impurities seem to be more efficient to scatter phonons as point defects in the pseudobrookite lattice rather than as nanocrystals at pseudobrookite grain boundaries. This emphasizes the importance of precursor purity and the influence of redistribution of impurities on thermoelectric properties: stability of micro-/nano-structures is a key point, and repeated thermoelectric measurements may allow detecting such metastable micro- /nano-structures and producing stable and reliable data. KW - Fe2TiO5 KW - Impurity segregation KW - Thermoelectrics KW - X-ray refraction KW - Scanning transmission electron microscopy PY - 2019 UR - http://www.sciencedirect.com/science/article/pii/S1044580318329309 U6 - https://doi.org/10.1016/j.matchar.2019.01.021 SN - 1044-5803 SN - 1873-4189 VL - 149 SP - 111 EP - 117 PB - Elsevier Inc. AN - OPUS4-47255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Cong A1 - Delorme, F. A1 - Schoenstein, F. A1 - Zaghrioui, M. A1 - Flahaut, D. A1 - Allouche, J. A1 - Giovannelli, F. T1 - Synthesis, sintering, and thermoelectric properties of Co1-xMxO (M = Na, 0 ≤ x ≤ 0.07; M = Ag, 0 ≤ x ≤ 0.05) N2 - The structural and thermoelectric properties of Na- and Ag-substituted CoO dense ceramics have been investigated. X-ray diffraction shows that pure phase and Ag/CoO composites have been obtained for Na-doped and Ag-doped CoO, respectively. Raman spectroscopy shows an effect of Na dopants on the lattice disorder of CoO. The chemical composition, element distribution, and valence states of the samples have been characterized by Auger electron microscopy and X-ray photoelectron spectroscopy. Substitution of Co by 5 at. % Na enhances the power factor to 250 μWm−1 K-2 at 1000 K, similar to that of Ca3Co4O9. The corresponding thermal conductivity is also reduced to 3.55 W.m−1 K−1 at 1000 K. Consequently, Co0.95Na0.05O exhibits the best thermoelectric figure of merit (ZT), which is 0.07 at 1000 K. On the other hand, the substitution of Ag into CoO leads to the formation of CoO/Ag composites and deteriorates ZT values. KW - Thermoelectrics KW - CoO KW - Substitution KW - Spark plasma sintering KW - XPS PY - 2019 U6 - https://doi.org/10.1016/j.jeurceramsoc.2018.10.013 SN - 0955-2219 SN - 1873-619X VL - 39 IS - 2–3 SP - 346 EP - 351 PB - Elsevier Ltd. AN - OPUS4-46453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -