TY - JOUR A1 - Appajaiah, Anilkumar A1 - Wachtendorf, Volker A1 - Daum, Werner T1 - Characterization of thermo-oxidative stability of polymer optical fibers using chemiluminescence technique N2 - The thermo-oxidative stability of commercially available polymer optical fibers (POFs) and their components (cores and claddings) was investigated. All the bare POFs (core and cladding only) studied here were based on poly(methyl methacrylate) (PMMA) core. The fibers were exposed to 100 °C/low humidity for about 4200 h. Chemiluminescence (CL) technique was applied to investigate the thermo-oxidative stability and for measuring the transmission loss during exposure a prototype device called multiplexer was used. POFs exhibited variation in thermo-oxidative stability although they possessed identical core material PMMA. This was due to difference in the chemical compositions of claddings. Claddings were more susceptible to the thermo-oxidative degradation compared to cores. The thermo-oxidative degradation of both the cladding and the core was found in POFs as a result of climatic exposure. POFs showed an early drop-off followed by a slow decline of transmission. The early drop-off of transmission was attributed to physical changes like thermal expansion and the slow decline of transmission to chemical changes like oxidative degradation of POFs. A good linear relationship between optical transmission stability and thermo-oxidative stability of POFs was established from these studies. KW - Polymer optical fibers (POFs) KW - Chemiluminescence (CL) KW - Thermo-oxidative stability KW - Aging KW - Optical transmission stability PY - 2006 U6 - https://doi.org/10.1016/j.polymdegradstab.2006.05.006 SN - 0141-3910 SN - 1873-2321 VL - 91 IS - 11 SP - 2605 EP - 2613 PB - Applied Science Publ. CY - London AN - OPUS4-13984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -