TY - CONF A1 - Klunker, André A1 - Köppe, Tabea A1 - Daum, Werner T1 - Different numerical methods around the SHPB experiment N2 - The Split Hopkinson Pressure Bar (SHPB) is a materials testing apparatus primarily designed for the analysis of viscoplastic material behavior at very high strain rates. Because of its complexity it is common practice to simplify the underlying exact mechanical theory by making strong assumptions. On the one hand this has to be done to achieve any results at all on the other hand one commits systematic errors. Therefore we utilize different numerical and Simulation methods to analyze and minimize these errors. T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics CY - Kempten, Germany DA - 24.09.2014 PY - 2014 SN - 978-3-00-046740-0 N1 - Geburtsname von Köppe, Tabea: Wilk, T. - Birth name of Köppe, Tabea: Wilk, T. SP - 189 EP - 190 AN - OPUS4-31726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Köppe, Enrico A1 - Hofmann, Detlef A1 - Daum, Werner T1 - Absolute measuring EFPI-measurement system N2 - The absolute detection of a gap distance of loose and ftxed extrinsic Fabry-Perot interferometer (EFPI) sensors with conventional measurement Systems is not possible. Due to this EFPI-sensors were deemed to be unfit for distance determination in comparision with FBG sensors. With the conventional measurement method a continous measurement of the EFPIsensors was necessary. Otherwise data about the distance change was lost. Additional it is necessary to detect the tumaround points in the interference signal with 100%. This made it worse for the analysis and the use of the sensor. At BAM Federal Institute for Materials Research and Testing a measurement System called “EFPI-Scan” is developed which can measure the absolute gap distance of four connected EFPI-sensors synchronous. Every measurement channel is temperature independetn and long term stable. Test measurements showed a deviation of maximum ±1 gm per hour. Furthermore it is possible to measure with different measurement modes (abolute, relative and a combination of both). Special emphasis should be placed to the absolute measurement accuracy of ± 5 pm at a gap distance determination ftom 40 up to 4000 pm. T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics CY - Kempten, Germany DA - 24.09.2014 PY - 2014 SN - 978-3-00-046740-0 SP - 120 EP - 121 AN - OPUS4-31729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppe, Enrico A1 - Augustin, D. A1 - Bartholmai, Matthias A1 - Daum, Werner T1 - Air-based multi-hop sensor network for the localization of persons N2 - In this work an air-based sensor network for the localization of persons at extensive areas is presented. The developed network consists of a localization device which the person is wearing (BodyGuard-System), a mobile relay station in the air, and a base station. All three parts communicate with the same radio chip. The BodyGuard-System is an inertial navigation system which was developed for localization in difficult environments with high accuracy and low measurement uncertainty. To increase the range of the system, a multi-hop network was built up. The measured data of the BodyGuard-System and the mobile relay station is visualized on a PC in the base station. This multi-hop network is necessary for example for fire department missions. T2 - EuroSensors 2014, 28th European Conference on Solid-State Transducers CY - Brescia, Italy DA - 07.09.2014 KW - WSN KW - Mesh routing KW - Air-based KW - Multi-hop KW - Localization PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-324294 DO - https://doi.org/10.1016/j.proeng.2014.11.540 SN - 1877-7058 VL - 87 SP - 528 EP - 531 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-32429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Köppe, Tabea A1 - Daum, Werner T1 - Pulse shaping and alignment tests with the split Hopkinson pressure bar for validation N2 - The Split Hopkinson Pressure Bar (SHPB) is a method for material characterization which works at strain rates from 102 - 104 1/s. This method can be used for example in the field of military engineering, in the field of deformation technology, automobile indurstry, aerospace industry or in other industrial fields. Controlled tests with the SHPB device enable Information about the dynamic material deformaion behaviour in the named strain rate area. The setup of the SHPB is not standarized and the measurement principle is dependent on simplifications. Due to this amongst others the problem with the dispersion of the measurement signal occurs. Furthermore it is possible that measurement uncertainties appear caused by the misalignment of the SHPB setup. In this work the influence of the alignment and a dispersion correction by pulse shaping is presented. On the one side for the alignment calibration tests are done. And on the other side for the dispersion influence correction with pulse shaping tests are done with TiA16V4. This material was choosen due to the fact that it can be compared with existing literature data. T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics CY - Kempten, Germany DA - 24.09.2014 PY - 2014 SN - 978-3-00-046740-0 N1 - Geburtsname von Köppe, Tabea: Wilk, T. - Birth name of Köppe, Tabea: Wilk, T. SP - 242 EP - 243 AN - OPUS4-31730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppe, Enrico A1 - Bartholmai, Matthias A1 - Daum, Werner A1 - Gong, Xing A1 - Hofmann, Detlef A1 - Basedau, Frank A1 - Schukar, Vivien A1 - Westphal, Anja A1 - Sahre, Mario A1 - Beck, Uwe T1 - New self - diagnostic fiber optical sensor technique for structural health monitoring N2 - Fiber optic sensors have gained increasing importance in recent years and are well established in many areas of industrial applications. In this paper, we introduce a concept of a self-diagnostic fiber optic sensor. The presented sensor is to resolve the problems of embedded fiber optic sensors in complex structures and to enable the validation under operational conditions. For this purpose, different magnetostrictive coated fiber optic sensors were developed and various experiments were performed to verify their mode of Operation and to determine the respective reproducibility. The measuring principle is illustrated by obtained experimental results, which showed a change in wavelength from 1 pm at a magnetic field strength change of 0.25 mT. In addition, the temperature characteristics of the implemented magnetostrictive sensor were analyzed and an experimental factor of 1.5 compared to a reference fiber optic sensor was determined. T2 - 32nd DANUBIA ADRIA SYMPOSIUM on Advances in Experimental Mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 KW - Self-diagnostic fiber optical sensor KW - Magnetostrictive metal coating KW - Magnetic field KW - Fiber bragg grating PY - 2016 DO - https://doi.org/10.1016/j.matpr.2016.03.038 SN - 2214-7853 VL - 3 IS - 4 SP - 1009 EP - 1013 AN - OPUS4-37131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Habel, Wolfgang R. A1 - Krebber, Katerina A1 - Daum, Werner T1 - Results in standardization of FOS to support the use of SHM systems N2 - Measurement and data recording systems are important parts of a holistic Structural Health Monitoring (SHM) system. New sensor technologies such as fiber-optic sensors are often used; however, standards (or at least guidelines) are not yet available or internationally approved. This lack in standardization makes the acceptance of FOS technologies in complex SHM systems substantially difficult. A standard family for different FOS technologies is therefore being developed that should help to design SHM systems in an optimal way. International standardization activities take place in several standardization bodies such as IEC and ASTM, and within SHM societies such as ISHMII. The paper reports on activities in standardization of fiber-optic sensors, on results already achieved, and on newly started projects. Combined activities of fiber sensor experts and SHM experts from Civil Engineering are presented. These contributions should help owners of structures as well as developers of sensors and monitoring systems to select effective and validated sensing technologies. Using these standards, both parties find recommendations how to proceed in development of SHM systems to evaluate the structural behavior based on e.g. standardized fiber optic sensors, and to derive necessary measures, e.g. the optimal maintenance strategy. T2 - Sixth European Workshop on Optical Fibre Sensors CY - Limerick, Ireland DA - 30.05.2016 KW - Fiber-optic sensor KW - Standard KW - Temperature KW - Strain KW - Monitoring KW - Structural health KW - Application PY - 2016 DO - https://doi.org/10.1117/12.2236863 SN - 0277-786X VL - 9916 SP - 991625-1 EP - 991625-4 AN - OPUS4-37053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habel, Wolfgang A1 - Krebber, Katerina A1 - Daum, Werner ED - Peters, K.J. T1 - Standardization in fibre-optic sensing for structural safety - activities in the ISHMII and IEC N2 - Fiber-optic sensors are increasingly established in the sensor market. Their advantages have unquestionably been verified by numerous demonstrations to enhance the operational performance of aged structures or to monitor the structural behavior of safety-relevant structures or their components. However, there are some barriers in use due to a lack of extensive standardization of fiber-optic sensors. This leads very often to restraints in the user’s community. The paper shows the status in international standardization of fiber-optic sensors as well as current activities in leading institutions such as IEC and ISHMII and others with the purpose of providing relevant standards for a broader use of selected fiber-optic sensor technologies. T2 - Smart sensor phenomena, technology, networks, and systems integration 2015 CY - San Diego, CA, USA DA - 08.03.2015 KW - Fibre-optic sensor KW - Standard KW - Temperature KW - Strain KW - Monitoring KW - Reliability KW - Application PY - 2015 DO - https://doi.org/10.1117/12.2185602 SN - 0277-786X VL - 9436 SP - 94360S-1 EP - 94360S-7 AN - OPUS4-33814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandes, K. A1 - Daum, Werner A1 - Hofmann, Detlef A1 - Basedau, Frank A1 - Kubowitz, P. T1 - Innovative structural damage detection of bridges by least squares adjustment with constraints T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics CY - Starý Smokovec, Slovakia DA - 2015-09-22 PY - 2015 SN - 978-80-554-1094-4 SP - 18 EP - 19 CY - Zilina AN - OPUS4-34486 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Frank A1 - Köppe, Enrico A1 - Daum, Werner T1 - Tracking deformation history in split Hopkinson pressure bar testing N2 - The stress vs. strain curve of materials is affected the rate of imposed straining. Among the methods for dynamic testing the technique known as 'split Hopkinson pressure bar' (SHPB) has evolved into the most widely used one to exert high-speed straining. The theory behind it comprises simple equations to compute stress and strain. The reliability of the strain analysis can be assessed by digital image correlation (DIC). The present results indicate that the visually observed strain is smaller than predicted by theory. T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 KW - Digitale Bildkorrelation (DIC) KW - Dynamische Tests KW - Spannungs-Dehnungs-Kurve KW - Digital image correlation (DIC) KW - Dynamic testing KW - Split Hopkinson pressure bar (SHPB) KW - Stress-strain curve PY - 2016 DO - https://doi.org/10.1016/j.matpr.2016.03.017 SN - 2214-7853 VL - 3 IS - 4 SP - 1139 EP - 1143 PB - Elsevier CY - Oxford AN - OPUS4-34487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Appajaiah, Anilkumar A1 - Wachtendorf, Volker A1 - Daum, Werner T1 - Climatic exposure of polymer optical fibers: Thermooxidative stability characterization by chemiluminescence N2 - The optical transmission stability was investigated for commercially available polymer optical fibers (POFs) which were exposed to a climate of 92°C and 95% relative humidity for about 3300 h. The optical transmission stability of POFs was correlated to their thermooxidative stability. POFs possessed identical core material, poly(methyl methacrylate), but they differed in the materials used for the claddings. The optical transmission was measured online using a prototype device called multiplexer. The chemiluminescence (CL) technique was applied to characterize the thermooxidative stability and degradation of POFs. CL analysis reveals the thermooxidative degradation of bare POFs (core and cladding), predominantly of the claddings, as a result of climatic exposure. Ultraviolet-visible transmittance measurements demonstrated more changes in the claddings as compared to the cores due to degradation. The CL and optical measurements data indicated that the optical transmission stability of POFs was dependent mainly on the thermooxidative stability of the claddings and their chemical compositions. KW - Ageing KW - Polymer optical fiber KW - Degradation KW - Chemiluminescence KW - Transparency PY - 2007 DO - https://doi.org/10.1002/app.23955 SN - 0021-8995 SN - 1097-4628 VL - 103 IS - 3 SP - 1593 EP - 1601 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-19072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Daum, Werner A1 - Czepluch, Wolf T1 - Reliability of Step-Index and Multi-Core POF for Automotive Applications T2 - POF 2003 ; 12th International Conference on Polymer Optical Fiber CY - Seattle, WA, USA DA - 2003-09-14 PY - 2003 SP - 6 EP - 9 CY - Seattle, Wash. AN - OPUS4-2724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Daum, Werner T1 - Standardised and Particular Methods for Reliability Testing of Polymer Optical Fibres T2 - 2nd Asia-Pacific Polymer Fibre Optics Workshop CY - Hong Kong, China DA - 2003-01-03 PY - 2003 SP - 15 EP - 20 CY - Hong Kong AN - OPUS4-2141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Lebid, Solomija A1 - Habel, Wolfgang A1 - Daum, Werner T1 - How reliable measure composite-embedded FBG sensors under the influence of transverse and point-wise deformations? T2 - 16th International Conference on Optical Fiber Sensors (OFS-16) CY - Nara, Japan DA - 2003-10-13 PY - 2003 SN - 4-89114-036-4 SP - 46 EP - 49 PB - IEICE CY - T¯oky¯o AN - OPUS4-2887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lebid, S. A1 - Habel, Wolfgang A1 - Daum, Werner T1 - How to reliably measure composite-embedded fibre Bragg grating sensors influenced by transverse and point-wise deformations? N2 - Embedded conventional fibre Bragg grating (FBG) sensors with acrylate coating have been chosen for monitoring novel textile-reinforced composite materials with a complicated wavy structure as a result of reinforcing textures. Problems of monitoring this type of material occur due to the harsh fabrication technology of the composite and its complicated structure. Embedded fibre sensors are exposed to the influence of transverse and point-wise deformations. To what extent will these effects influence the measurement signal of a sensor? Temperature cycles, tension and vibration tests were carried out to answer this question. Transverse and point-wise deformation and micromechanical indentation tests on non-embedded FBG sensors were carried out to clarify the reliability of recorded signals. KW - FBG sensors KW - Textile-reinforced composites KW - Measurement reliability PY - 2004 UR - http://www.iop.org/EJ/abstract/0957-0233/15/8/001/ DO - https://doi.org/10.1088/0957-0233/15/8/001 SN - 0957-0233 SN - 1361-6501 VL - 15 SP - 1441 EP - 1447 PB - IOP Publ. Ltd. CY - Bristol AN - OPUS4-3846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Daum, Werner T1 - Chemiluminescence investigation of high temperature and humidity again of PMAA based polymer optical fibres (POF) T2 - The 12th International Conference on polymer Optical Fibres CY - Seattle, WA, USA DA - 2003-09-14 PY - 2003 AN - OPUS4-5103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Daum, Werner T1 - Optical fibers for adverse environment T2 - Technowatch 2003 CY - Brussels, Belgium DA - 2003-10-29 PY - 2003 AN - OPUS4-5139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Daum, Werner T1 - Standardised and particular methods for reliability testing of polymer optical fibres T2 - 2nd Asia-Pacific Polymer Optical Fibre Workshop CY - Hong Kong, China DA - 2003-01-03 PY - 2003 AN - OPUS4-5109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Daum, Werner T1 - Reliability of step-index and multi-core POF for automobile applications T2 - 12th International Conference on Polymer Optical Fibres CY - Seattle, WA, USA DA - 2003-09-14 PY - 2003 AN - OPUS4-5111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Daum, Werner ED - Koike, Y. T1 - Standards and Specifications for POF Characterisation T2 - 13th International Plastic Optical Fibres Conference 2004 CY - Nuremberg, Germany DA - 2004-09-27 KW - Plastic optical fibres KW - Standards KW - Specification KW - Testing KW - Characterisation PY - 2004 SN - 3-905084-70-8 SP - 133 EP - 139 PB - AKM Congress Service CY - Basel AN - OPUS4-5231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Appajaiah, Anilkumar A1 - Wachtendorf, Volker A1 - Daum, Werner T1 - Characterization of thermo-oxidative stability of polymer optical fibers using chemiluminescence technique N2 - The thermo-oxidative stability of commercially available polymer optical fibers (POFs) and their components (cores and claddings) was investigated. All the bare POFs (core and cladding only) studied here were based on poly(methyl methacrylate) (PMMA) core. The fibers were exposed to 100 °C/low humidity for about 4200 h. Chemiluminescence (CL) technique was applied to investigate the thermo-oxidative stability and for measuring the transmission loss during exposure a prototype device called multiplexer was used. POFs exhibited variation in thermo-oxidative stability although they possessed identical core material PMMA. This was due to difference in the chemical compositions of claddings. Claddings were more susceptible to the thermo-oxidative degradation compared to cores. The thermo-oxidative degradation of both the cladding and the core was found in POFs as a result of climatic exposure. POFs showed an early drop-off followed by a slow decline of transmission. The early drop-off of transmission was attributed to physical changes like thermal expansion and the slow decline of transmission to chemical changes like oxidative degradation of POFs. A good linear relationship between optical transmission stability and thermo-oxidative stability of POFs was established from these studies. KW - Polymer optical fibers (POFs) KW - Chemiluminescence (CL) KW - Thermo-oxidative stability KW - Aging KW - Optical transmission stability PY - 2006 DO - https://doi.org/10.1016/j.polymdegradstab.2006.05.006 SN - 0141-3910 SN - 1873-2321 VL - 91 IS - 11 SP - 2605 EP - 2613 PB - Applied Science Publ. CY - London AN - OPUS4-13984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -