TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Daum, Werner T1 - Multi-sensor systems for safety-related monitoring T2 - Sensor 2013 - 16th International conference on sensors and measurement technology CY - Nürnberg, Germany DA - 2013-05-14 KW - Multi-sensor system KW - Condition monitoring KW - Safety management KW - Hazardous scenarios KW - Data-fusion PY - 2013 SN - 978-3-9813484-3-9 DO - https://doi.org/10.5162/sensor2013/B5.2 N1 - Serientitel: AMA Conferences – Series title: AMA Conferences SP - 268 EP - 272 AN - OPUS4-28518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krebber, Katerina A1 - Lenke, Philipp A1 - Liehr, Sascha A1 - Nöther, N. A1 - Wendt, Mario A1 - Wosniok, Aleksander A1 - Daum, Werner T1 - Structural health monitoring by distributed fiber optic sensors embedded into technical textiles N2 - Technical textiles with embedded distributed fiber optic sensors have been developed for the purposes of structural health monitoring in geotechnical and civil engineering. The distributed fiber optic sensors are based on Brillouin scattering in silica optical fibers and OTDR in polymer optical fibers. Such 'smart' technical textiles are used for reinforcement of geotechnical and masonry structures. The embedded fiber optic sensors provide online information about the condition of the structure and about the occurrence and location of any damage or degradation.-------------------------------------------------------------------------------------------------------------------------------------------------------- Technische Textilien mit integrierten faseroptischen Sensoren eröffnen neue Möglichkeiten der Zustandsüberwachung (structural health monitoring) in Geotechnik und Ingenieurbau. Die verteilt messenden Sensoren basieren auf der Brillouin-Streuung in Glasfasern und auf der OTDR in polymeroptischen Fasern. Derartige 'intelligente' technische Textilien werden in erster Line zur Verstärkung von geotechnischen Bauwerken und von Gebäuden genutzt. Die integrierten Sensoren liefern eine zeitnahe Information über den bestimmungsgemäßen Zustand des Bauwerks sowie über die Entstehung und den Ort von lokalen Bauwerksschäden. KW - Fiber optic sensor KW - Distributed sensor KW - Brillouin scattering KW - Polymer optical fiber KW - Strain sensor KW - Smart geotextiles KW - Faseroptischer Sensor KW - Verteilter Sensor KW - Brillouin-Streuung KW - Polymeroptische Faser KW - Dehnungssensor KW - Intelligentes Geotextil PY - 2012 DO - https://doi.org/10.1524/teme.2012.0238 SN - 0340-837X SN - 0178-2312 SN - 0171-8096 VL - 79 IS - 7-8 SP - 337 EP - 347 PB - Oldenbourg CY - München AN - OPUS4-26387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Daum, Werner A1 - Poisel, H. T1 - Optical fibers for adverse environment T2 - Technowatch 2003 CY - Brussels, Belgium DA - 2003-10-29 PY - 2003 AN - OPUS4-5139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Brandes, Klaus A1 - Daum, Werner A1 - Buchhardt, Frank T1 - Monitoring of Bridges by Advanced Methods of Experimental - Mechanical Symbiosis T2 - International Association for Bridge and Structural Engineering (IABSE) Symposium 2007 CY - Weimar, Deutschland DA - 2007-09-19 KW - Long-term monitoring KW - Sensors KW - Experimental-analytical symbiosis KW - Bridges KW - Lagrangian Multipliers KW - Structural modelling PY - 2007 SN - 978-3-85748-116-1 VL - 93 SP - 1 EP - 8 CY - Weimar AN - OPUS4-16327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ziemann, O. A1 - Krauser, J. A1 - Zamzow, P. E. A1 - Daum, Werner T1 - POF handbook - Optical short range transmission systems PY - 2008 SN - 978-3-540-76628-5 DO - https://doi.org/10.1007/978-3-540-76629-2 SP - 1 EP - 880 PB - Springer CY - Berlin ET - 2. AN - OPUS4-16699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Brandes, Klaus A1 - Daum, Werner A1 - Buchhardt, Frank ED - Paulo J.S. Cruz, ED - Dan M. Frangopol, ED - Luis C. Neves, T1 - Long-term monitoring of concrete bridges by direct combination of experimental and mechanical analysis T2 - 3. International Conference on Bridge Maintenance, Safety and Management "Bridge Maintenance, Safety, Management, Life-Cycle Performance and Cost", IABMAS `06 CY - Porto, Portugal DA - 2006-07-16 PY - 2006 SN - 978-0-415-40315-3 SP - 1 EP - 8 PB - Taylor & Francis CY - Leiden, The Netherlands AN - OPUS4-16395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Appajaiah, Anilkumar A1 - Wachtendorf, Volker A1 - Daum, Werner T1 - Characterization of thermo-oxidative stability of polymer optical fibers using chemiluminescence technique N2 - The thermo-oxidative stability of commercially available polymer optical fibers (POFs) and their components (cores and claddings) was investigated. All the bare POFs (core and cladding only) studied here were based on poly(methyl methacrylate) (PMMA) core. The fibers were exposed to 100 °C/low humidity for about 4200 h. Chemiluminescence (CL) technique was applied to investigate the thermo-oxidative stability and for measuring the transmission loss during exposure a prototype device called multiplexer was used. POFs exhibited variation in thermo-oxidative stability although they possessed identical core material PMMA. This was due to difference in the chemical compositions of claddings. Claddings were more susceptible to the thermo-oxidative degradation compared to cores. The thermo-oxidative degradation of both the cladding and the core was found in POFs as a result of climatic exposure. POFs showed an early drop-off followed by a slow decline of transmission. The early drop-off of transmission was attributed to physical changes like thermal expansion and the slow decline of transmission to chemical changes like oxidative degradation of POFs. A good linear relationship between optical transmission stability and thermo-oxidative stability of POFs was established from these studies. KW - Polymer optical fibers (POFs) KW - Chemiluminescence (CL) KW - Thermo-oxidative stability KW - Aging KW - Optical transmission stability PY - 2006 DO - https://doi.org/10.1016/j.polymdegradstab.2006.05.006 SN - 0141-3910 SN - 1873-2321 VL - 91 IS - 11 SP - 2605 EP - 2613 PB - Applied Science Publ. CY - London AN - OPUS4-13984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Daum, Werner ED - Czichos, Horst ED - Tetsuya Saito, ED - Leslie Smith, T1 - Structural Health Monitoring - Embedded Sensors KW - Measurement Methods for Composition and Structure KW - Measurement Methods for Material Properties KW - Measurement Methods for Material Performance, Modelling and Simulation Methods PY - 2006 SN - 978-3-540-20785-6 IS - Part D / 16.6 SP - 875 EP - 890 PB - Springer CY - Berlin AN - OPUS4-13985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Köppe, Tabea A1 - Bartholmai, Matthias A1 - Daum, Werner ED - Ognjanovic, M. ED - Stankovic, M. ED - Ristic, M. T1 - Introduction in the system of the split Hopkinson pressure bar and validation of the method N2 - The Split Hopkinson Pressure Bar (SHPB) or Kolsky Bar is known as a method for analysing mechanical properties of a material under dynamic load. Referring to the name it is a splitted Hopkinson Pressure Bar. The Hopkinson Bar is related to its inventor Bertram Hopkinson (1914). He used it to analyze stone samples under dynamic load. Later his construction was improved by Davies (1948) [1] and Kolsky (1949) [2], who had the idea to split the bar and put a sample in between. The technique is used to measure a lot of different mechanical properties of a material e.g. the dynamic Young’s modulus, deformation behaviour or to chart the dynamic stress-strain diagram. Further applications are the measurement of the elastic wave and the analysis of the propagation of the wave [2]. In the last years there was still an interest in measuring dynamic properties with a SHPB. Nevertheless no comprehensive validation of the system exists. Another problem is that the stress and the strain in the sample are only calculated with simplified estimations. The aim of this paper is to give a first impression of important points validating the system. On account of different setups of the SHPB a validation of the used system is necessary. Hence it is important to look at the theory. Further in this paper the measurement results will be shown in a strain over time diagram. T2 - DAS-29 - 29th Danubia-Adria-symposium on advances in experimental mechanics CY - Belgrade, Serbia DA - 2012-09-26 PY - 2012 SN - 978-86-7083-762-1 N1 - Geburtsname von Köppe, Tabea: Wilk, T. - Birth name of Köppe, Tabea: Wilk, T. SP - 52 EP - 53 CY - Belgrade, Serbia AN - OPUS4-26638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Daum, Werner ED - Czichos, Horst T1 - Embedded sensors N2 - This chapter introduces the concept of structural health monitoring, gives an overview of state-of-the-art sensing techniques used for performance control and condition monitoring, and reviews topical applications from different industrial areas. KW - Messtechnik KW - Sensorik KW - Structural health monitoring PY - 2013 SN - 978-3-642-25849-7 SN - 978-3-642-25850-3 DO - https://doi.org/10.1007/978-3-642-25850-3_13 IS - Part II / Chapter 13 SP - 259 EP - 285 PB - Springer CY - Berlin Heidelberg AN - OPUS4-28928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Daum, Werner ED - Czichos, Horst T1 - Principles, concepts and assessment of structural health monitoring N2 - This chapter introduces and describes the concept of structural health monitoring (SHM) to engineers and designers of technical structures, and to the owners/operators of such structures. It formulates general principles for integrating and implementing measurement and signal processing technologies in the context of SHM to diagnose the condition, performance and health of a technical structure. Information and recommended methods for designing instrumentation, data acquisition, data processing and data analysis for any SHM application are offered. KW - Messtechnik KW - Sensorik KW - Structural health monitoring PY - 2013 SN - 978-3-642-25849-7 SN - 978-3-642-25850-3 DO - https://doi.org/10.1007/978-3-642-25850-3_20 IS - Part IV / Chapter 20 SP - 413 EP - 424 PB - Springer CY - Berlin Heidelberg AN - OPUS4-28929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Daum, Werner ED - Czichos, Horst T1 - Guidelines for structural health monitoring N2 - This chapter summarizes the state of the art and current developments of guidelines for structural health monitoring (SHM) and performance control. Technical guidelines and standards for condition monitoring and technical diagnostics of rotary machines and for non-destructive testing are not reviewed in this chapter. KW - Messtechnik KW - Sensorik KW - Structural health monitoring PY - 2013 SN - 978-3-642-25849-7 SN - 978-3-642-25850-3 DO - https://doi.org/10.1007/978-3-642-25850-3_27 IS - Part IV / Chapter 27 SP - 539 EP - 541 PB - Springer CY - Berlin Heidelberg AN - OPUS4-28930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Daum, Werner A1 - Gründer, Klaus-Peter A1 - Kadoke, Daniel A1 - Protz, Christian A1 - Zencker, Uwe T1 - Optical 3D dynamic deformation analysis of a ram container during a drop test T2 - 30th Danubia-Adria symposium on advances in experimental mechanics CY - Primosten, Croatia DA - 2013-09-25 KW - Steel sheet container KW - Drop test KW - Numerical simulation KW - Optical digitization KW - High speed stereo photogrammetry PY - 2013 SN - 978-953-7539-17-7 SP - 45 EP - 46 AN - OPUS4-29414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppe, Enrico A1 - Bartholmai, Matthias A1 - Daum, Werner A1 - Gong, Xing A1 - Hofmann, Detlef A1 - Basedau, Frank A1 - Schukar, Vivien A1 - Westphal, Anja A1 - Sahre, Mario A1 - Beck, Uwe T1 - New self - diagnostic fiber optical sensor technique for structural health monitoring N2 - Fiber optic sensors have gained increasing importance in recent years and are well established in many areas of industrial applications. In this paper, we introduce a concept of a self-diagnostic fiber optic sensor. The presented sensor is to resolve the problems of embedded fiber optic sensors in complex structures and to enable the validation under operational conditions. For this purpose, different magnetostrictive coated fiber optic sensors were developed and various experiments were performed to verify their mode of Operation and to determine the respective reproducibility. The measuring principle is illustrated by obtained experimental results, which showed a change in wavelength from 1 pm at a magnetic field strength change of 0.25 mT. In addition, the temperature characteristics of the implemented magnetostrictive sensor were analyzed and an experimental factor of 1.5 compared to a reference fiber optic sensor was determined. T2 - 32nd DANUBIA ADRIA SYMPOSIUM on Advances in Experimental Mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 KW - Self-diagnostic fiber optical sensor KW - Magnetostrictive metal coating KW - Magnetic field KW - Fiber bragg grating PY - 2016 DO - https://doi.org/10.1016/j.matpr.2016.03.038 SN - 2214-7853 VL - 3 IS - 4 SP - 1009 EP - 1013 AN - OPUS4-37131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Habel, Wolfgang R. A1 - Krebber, Katerina A1 - Daum, Werner T1 - Results in standardization of FOS to support the use of SHM systems N2 - Measurement and data recording systems are important parts of a holistic Structural Health Monitoring (SHM) system. New sensor technologies such as fiber-optic sensors are often used; however, standards (or at least guidelines) are not yet available or internationally approved. This lack in standardization makes the acceptance of FOS technologies in complex SHM systems substantially difficult. A standard family for different FOS technologies is therefore being developed that should help to design SHM systems in an optimal way. International standardization activities take place in several standardization bodies such as IEC and ASTM, and within SHM societies such as ISHMII. The paper reports on activities in standardization of fiber-optic sensors, on results already achieved, and on newly started projects. Combined activities of fiber sensor experts and SHM experts from Civil Engineering are presented. These contributions should help owners of structures as well as developers of sensors and monitoring systems to select effective and validated sensing technologies. Using these standards, both parties find recommendations how to proceed in development of SHM systems to evaluate the structural behavior based on e.g. standardized fiber optic sensors, and to derive necessary measures, e.g. the optimal maintenance strategy. T2 - Sixth European Workshop on Optical Fibre Sensors CY - Limerick, Ireland DA - 30.05.2016 KW - Fiber-optic sensor KW - Standard KW - Temperature KW - Strain KW - Monitoring KW - Structural health KW - Application PY - 2016 DO - https://doi.org/10.1117/12.2236863 SN - 0277-786X VL - 9916 SP - 991625-1 EP - 991625-4 AN - OPUS4-37053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandes, K. A1 - Daum, Werner A1 - Hofmann, Detlef A1 - Kubowitz, P. T1 - Lagrange multiplier test for structural damage of bridges N2 - Detecting spreading damage in bridges is a demanding task for engineers today when the ageing infrastracture of industriaiized countries is degradating more and more. To successfully deal with tbis problem, a really advanced method has been elaborated basing on Langrange Multiplier (LM) tests and following the principle of simplicity by Hilbert and extending comments by Helmholtz refering to a combination of measurement and analytical treatment. Finally, an easy mathematical fonnation has been created. T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics CY - Kempten, Germany DA - 24.09.2014 PY - 2014 SN - 978-3-00-046740-0 SP - 213 EP - 214 AN - OPUS4-31725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klunker, André A1 - Köppe, Tabea A1 - Daum, Werner T1 - Different numerical methods around the SHPB experiment N2 - The Split Hopkinson Pressure Bar (SHPB) is a materials testing apparatus primarily designed for the analysis of viscoplastic material behavior at very high strain rates. Because of its complexity it is common practice to simplify the underlying exact mechanical theory by making strong assumptions. On the one hand this has to be done to achieve any results at all on the other hand one commits systematic errors. Therefore we utilize different numerical and Simulation methods to analyze and minimize these errors. T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics CY - Kempten, Germany DA - 24.09.2014 PY - 2014 SN - 978-3-00-046740-0 N1 - Geburtsname von Köppe, Tabea: Wilk, T. - Birth name of Köppe, Tabea: Wilk, T. SP - 189 EP - 190 AN - OPUS4-31726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Köppe, Enrico A1 - Hofmann, Detlef A1 - Daum, Werner T1 - Absolute measuring EFPI-measurement system N2 - The absolute detection of a gap distance of loose and ftxed extrinsic Fabry-Perot interferometer (EFPI) sensors with conventional measurement Systems is not possible. Due to this EFPI-sensors were deemed to be unfit for distance determination in comparision with FBG sensors. With the conventional measurement method a continous measurement of the EFPIsensors was necessary. Otherwise data about the distance change was lost. Additional it is necessary to detect the tumaround points in the interference signal with 100%. This made it worse for the analysis and the use of the sensor. At BAM Federal Institute for Materials Research and Testing a measurement System called “EFPI-Scan” is developed which can measure the absolute gap distance of four connected EFPI-sensors synchronous. Every measurement channel is temperature independetn and long term stable. Test measurements showed a deviation of maximum ±1 gm per hour. Furthermore it is possible to measure with different measurement modes (abolute, relative and a combination of both). Special emphasis should be placed to the absolute measurement accuracy of ± 5 pm at a gap distance determination ftom 40 up to 4000 pm. T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics CY - Kempten, Germany DA - 24.09.2014 PY - 2014 SN - 978-3-00-046740-0 SP - 120 EP - 121 AN - OPUS4-31729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Köppe, Tabea A1 - Daum, Werner T1 - Pulse shaping and alignment tests with the split Hopkinson pressure bar for validation N2 - The Split Hopkinson Pressure Bar (SHPB) is a method for material characterization which works at strain rates from 102 - 104 1/s. This method can be used for example in the field of military engineering, in the field of deformation technology, automobile indurstry, aerospace industry or in other industrial fields. Controlled tests with the SHPB device enable Information about the dynamic material deformaion behaviour in the named strain rate area. The setup of the SHPB is not standarized and the measurement principle is dependent on simplifications. Due to this amongst others the problem with the dispersion of the measurement signal occurs. Furthermore it is possible that measurement uncertainties appear caused by the misalignment of the SHPB setup. In this work the influence of the alignment and a dispersion correction by pulse shaping is presented. On the one side for the alignment calibration tests are done. And on the other side for the dispersion influence correction with pulse shaping tests are done with TiA16V4. This material was choosen due to the fact that it can be compared with existing literature data. T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics CY - Kempten, Germany DA - 24.09.2014 PY - 2014 SN - 978-3-00-046740-0 N1 - Geburtsname von Köppe, Tabea: Wilk, T. - Birth name of Köppe, Tabea: Wilk, T. SP - 242 EP - 243 AN - OPUS4-31730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Appajaiah, Anilkumar A1 - Wachtendorf, Volker A1 - Daum, Werner T1 - Climatic exposure of polymer optical fibers: Thermooxidative stability characterization by chemiluminescence N2 - The optical transmission stability was investigated for commercially available polymer optical fibers (POFs) which were exposed to a climate of 92°C and 95% relative humidity for about 3300 h. The optical transmission stability of POFs was correlated to their thermooxidative stability. POFs possessed identical core material, poly(methyl methacrylate), but they differed in the materials used for the claddings. The optical transmission was measured online using a prototype device called multiplexer. The chemiluminescence (CL) technique was applied to characterize the thermooxidative stability and degradation of POFs. CL analysis reveals the thermooxidative degradation of bare POFs (core and cladding), predominantly of the claddings, as a result of climatic exposure. Ultraviolet-visible transmittance measurements demonstrated more changes in the claddings as compared to the cores due to degradation. The CL and optical measurements data indicated that the optical transmission stability of POFs was dependent mainly on the thermooxidative stability of the claddings and their chemical compositions. KW - Ageing KW - Polymer optical fiber KW - Degradation KW - Chemiluminescence KW - Transparency PY - 2007 DO - https://doi.org/10.1002/app.23955 SN - 0021-8995 SN - 1097-4628 VL - 103 IS - 3 SP - 1593 EP - 1601 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-19072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -