TY - JOUR A1 - Hilgenberg, Kai A1 - Daum, Werner A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Bruno, Giovanni A1 - Heckel, Thomas A1 - Skrotzki, Birgit A1 - Zerbst, Uwe A1 - Kranzmann, Axel A1 - Bettge, Dirk A1 - Sommer, Konstantin A1 - Seeger, Stefan A1 - Nitsche, Michael A1 - Günster, Jens A1 - Evans, Alexander T1 - Additive manufacturing at the BAM: We focus on Safety JF - Advanced Materials and Processes N2 - In Germany, the Federal Institute for Materials Research and Testing (BAM) is addressing challenges in the implementation of additive manufacturing on the industrial landscape for safety-critical applications. KW - Process development KW - Additive Manufacturing KW - In-situ Process Monitoring KW - Non-destructive Materials KW - Characterisation KW - Safety KW - Fatigue KW - Environment KW - Standardisation PY - 2019 UR - https://static.asminternational.org/amp/201910/22/ SN - 0882-7958 VL - 177 IS - 7 SP - 22 EP - 26 PB - ASM International CY - Materials Park, OH, USA AN - OPUS4-49780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Appajaiah, Anilkumar A1 - Wachtendorf, Volker A1 - Daum, Werner T1 - Characterization of thermo-oxidative stability of polymer optical fibers using chemiluminescence technique JF - Polymer degradation and stability N2 - The thermo-oxidative stability of commercially available polymer optical fibers (POFs) and their components (cores and claddings) was investigated. All the bare POFs (core and cladding only) studied here were based on poly(methyl methacrylate) (PMMA) core. The fibers were exposed to 100 °C/low humidity for about 4200 h. Chemiluminescence (CL) technique was applied to investigate the thermo-oxidative stability and for measuring the transmission loss during exposure a prototype device called multiplexer was used. POFs exhibited variation in thermo-oxidative stability although they possessed identical core material PMMA. This was due to difference in the chemical compositions of claddings. Claddings were more susceptible to the thermo-oxidative degradation compared to cores. The thermo-oxidative degradation of both the cladding and the core was found in POFs as a result of climatic exposure. POFs showed an early drop-off followed by a slow decline of transmission. The early drop-off of transmission was attributed to physical changes like thermal expansion and the slow decline of transmission to chemical changes like oxidative degradation of POFs. A good linear relationship between optical transmission stability and thermo-oxidative stability of POFs was established from these studies. KW - Polymer optical fibers (POFs) KW - Chemiluminescence (CL) KW - Thermo-oxidative stability KW - Aging KW - Optical transmission stability PY - 2006 DO - https://doi.org/10.1016/j.polymdegradstab.2006.05.006 SN - 0141-3910 SN - 1873-2321 VL - 91 IS - 11 SP - 2605 EP - 2613 PB - Applied Science Publ. CY - London AN - OPUS4-13984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Appajaiah, Anilkumar A1 - Wachtendorf, Volker A1 - Daum, Werner T1 - Climatic exposure of polymer optical fibers: Thermooxidative stability characterization by chemiluminescence JF - Journal of applied polymer science N2 - The optical transmission stability was investigated for commercially available polymer optical fibers (POFs) which were exposed to a climate of 92°C and 95% relative humidity for about 3300 h. The optical transmission stability of POFs was correlated to their thermooxidative stability. POFs possessed identical core material, poly(methyl methacrylate), but they differed in the materials used for the claddings. The optical transmission was measured online using a prototype device called multiplexer. The chemiluminescence (CL) technique was applied to characterize the thermooxidative stability and degradation of POFs. CL analysis reveals the thermooxidative degradation of bare POFs (core and cladding), predominantly of the claddings, as a result of climatic exposure. Ultraviolet-visible transmittance measurements demonstrated more changes in the claddings as compared to the cores due to degradation. The CL and optical measurements data indicated that the optical transmission stability of POFs was dependent mainly on the thermooxidative stability of the claddings and their chemical compositions. KW - Ageing KW - Polymer optical fiber KW - Degradation KW - Chemiluminescence KW - Transparency PY - 2007 DO - https://doi.org/10.1002/app.23955 SN - 0021-8995 SN - 1097-4628 VL - 103 IS - 3 SP - 1593 EP - 1601 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-19072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klunker, André A1 - Köppe, Tabea A1 - Daum, Werner T1 - Different numerical methods around the SHPB experiment T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics (Proceedings) N2 - The Split Hopkinson Pressure Bar (SHPB) is a materials testing apparatus primarily designed for the analysis of viscoplastic material behavior at very high strain rates. Because of its complexity it is common practice to simplify the underlying exact mechanical theory by making strong assumptions. On the one hand this has to be done to achieve any results at all on the other hand one commits systematic errors. Therefore we utilize different numerical and Simulation methods to analyze and minimize these errors. T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics CY - Kempten, Germany DA - 24.09.2014 PY - 2014 SN - 978-3-00-046740-0 N1 - Geburtsname von Köppe, Tabea: Wilk, T. - Birth name of Köppe, Tabea: Wilk, T. SP - 189 EP - 190 AN - OPUS4-31726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hässelbarth, Werner A1 - Daum, Werner A1 - Noack, Siegfried A1 - Subaric-Leitis, Andreas T1 - Ermittlung der Unsicherheit von Prüfergebnissen - Beispiele aus der chemischen Analytik und der Materialprüfung an der BAM (Evaluating the Uncertainty of Test Results - Examples from Chemical Analysis and Materials Testing at BAM) JF - Technisches Messen N2 - An der BAM wurde Anfang 1996 die GUM-konforme Ermittlung und Angabe der Unsicherheit quantitativer Prüfergebnisse eingeführt. Nach einem kurzen Überblick über die wesentlichen Schritte und die bisherigen Erfahrungen wird die Ermittlung der Unsicherheit an Beispielen aus zwei Schwerpunktsbereichen der Prüftätigkeit der BAM vorgestellt: atomspektrometrische Analyse anorganischer Materialien und mechanisch-technologische Werkstoffprüfung. Abschließend wird ein Ausblick auf die Ermittlung der Unsicherheit qualitativer Prüfergebnisse gegeben. Diese Arbeit ist ein ergänzender Beitrag zur Thematik des tm-Sonderheftes über GUM-konforme Auswertung von Messungen, das im Januar 2001 erschienen ist. At BAM, GUM-compliant evaluation and expression of uncertainty for quantitative test results was introduced in early 1996. After a brief overview of essential steps and experience so far, uncertainty evaluation is presented for examples from two main fields of BAM´s testing activities: analysis of inorganic materials by atomic spectrometry and mechanical materials testing using tensile/compression testing machines. Finally, an outlook is given on the evaluation of uncertainty for qualitative test results. This paper is a supplementary contribution to the topic of the tm special edition on GUM-compliant evaluation of measurements published January 2001. KW - Messunsicherheit KW - Ergebnisunsicherheit KW - Elementanalytik KW - Kalibrierlösungen KW - Zugprüfung KW - Werkstoffprüfmaschinen PY - 2001 DO - https://doi.org/10.1524/teme.2001.68.11.519 SN - 0340-837X SN - 0178-2312 SN - 0171-8096 N1 - Sprachen: Deutsch/Englisch - Languages: German/English VL - 68 IS - 11 SP - 519 EP - 528 PB - Oldenbourg CY - München AN - OPUS4-894 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lebid, S. A1 - Habel, Wolfgang A1 - Daum, Werner T1 - How to reliably measure composite-embedded fibre Bragg grating sensors influenced by transverse and point-wise deformations? JF - Measurement science and technology N2 - Embedded conventional fibre Bragg grating (FBG) sensors with acrylate coating have been chosen for monitoring novel textile-reinforced composite materials with a complicated wavy structure as a result of reinforcing textures. Problems of monitoring this type of material occur due to the harsh fabrication technology of the composite and its complicated structure. Embedded fibre sensors are exposed to the influence of transverse and point-wise deformations. To what extent will these effects influence the measurement signal of a sensor? Temperature cycles, tension and vibration tests were carried out to answer this question. Transverse and point-wise deformation and micromechanical indentation tests on non-embedded FBG sensors were carried out to clarify the reliability of recorded signals. KW - FBG sensors KW - Textile-reinforced composites KW - Measurement reliability PY - 2004 UR - http://www.iop.org/EJ/abstract/0957-0233/15/8/001/ DO - https://doi.org/10.1088/0957-0233/15/8/001 SN - 0957-0233 SN - 1361-6501 VL - 15 SP - 1441 EP - 1447 PB - IOP Publ. Ltd. CY - Bristol AN - OPUS4-3846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandes, K. A1 - Daum, Werner A1 - Hofmann, Detlef A1 - Basedau, Frank A1 - Kubowitz, P. T1 - Innovative structural damage detection of bridges by least squares adjustment with constraints T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics (Proceedings) T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics CY - Starý Smokovec, Slovakia DA - 2015-09-22 PY - 2015 SN - 978-80-554-1094-4 SP - 18 EP - 19 CY - Zilina AN - OPUS4-34486 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brandes, K. A1 - Daum, Werner A1 - Hofmann, Detlef A1 - Basedau, Frank A1 - Kubowitz, P. T1 - Innovative structural damage detection of bridges by least squares adjustment with constraints JF - Materials Today: Proceedings N2 - Long-term monitoring of bridges requires the early detection of spreading damage because very often the damage is not really visible. For many decades engineers and scientists relayed on dynamic methods especially modal ones. However, after fundamental tests by the U.S. FHWA in 1993, it became evident that more successful methods should be developed, but no innovation really happened. A substantial innovative detection method started four years ago from Lagrange Multiplier Testing which eventually resulted in experimental verification based on measurement of deflection and curvature of the bridge beam and together the methodological combination of both. T2 - 32nd DANUBIA ADRIA SYMPOSIUM on Advances in Experimental Mechanics CY - Starý Smokovec – High Tatras, Slovakia DA - 22.09.2015 KW - Damage detection of bridges KW - Monitoring KW - Lagrange multiplier test PY - 2016 DO - https://doi.org/10.1016/j.matpr.2016.03.025 SN - 2214-7853 VL - 3 IS - 4 SP - 942 EP - 946 PB - Elsevier AN - OPUS4-36667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Köppe, Tabea A1 - Bartholmai, Matthias A1 - Daum, Werner ED - Ognjanovic, M. ED - Stankovic, M. ED - Ristic, M. T1 - Introduction in the system of the split Hopkinson pressure bar and validation of the method T2 - DAS-29 - 29th Danubia-Adria-symposium on advances in experimental mechanics (Proceedings) N2 - The Split Hopkinson Pressure Bar (SHPB) or Kolsky Bar is known as a method for analysing mechanical properties of a material under dynamic load. Referring to the name it is a splitted Hopkinson Pressure Bar. The Hopkinson Bar is related to its inventor Bertram Hopkinson (1914). He used it to analyze stone samples under dynamic load. Later his construction was improved by Davies (1948) [1] and Kolsky (1949) [2], who had the idea to split the bar and put a sample in between. The technique is used to measure a lot of different mechanical properties of a material e.g. the dynamic Young’s modulus, deformation behaviour or to chart the dynamic stress-strain diagram. Further applications are the measurement of the elastic wave and the analysis of the propagation of the wave [2]. In the last years there was still an interest in measuring dynamic properties with a SHPB. Nevertheless no comprehensive validation of the system exists. Another problem is that the stress and the strain in the sample are only calculated with simplified estimations. The aim of this paper is to give a first impression of important points validating the system. On account of different setups of the SHPB a validation of the used system is necessary. Hence it is important to look at the theory. Further in this paper the measurement results will be shown in a strain over time diagram. T2 - DAS-29 - 29th Danubia-Adria-symposium on advances in experimental mechanics CY - Belgrade, Serbia DA - 2012-09-26 PY - 2012 SN - 978-86-7083-762-1 N1 - Geburtsname von Köppe, Tabea: Wilk, T. - Birth name of Köppe, Tabea: Wilk, T. SP - 52 EP - 53 CY - Belgrade, Serbia AN - OPUS4-26638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandes, K. A1 - Daum, Werner A1 - Hofmann, Detlef A1 - Kubowitz, P. T1 - Lagrange multiplier test for structural damage of bridges T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics (Proceedings) N2 - Detecting spreading damage in bridges is a demanding task for engineers today when the ageing infrastracture of industriaiized countries is degradating more and more. To successfully deal with tbis problem, a really advanced method has been elaborated basing on Langrange Multiplier (LM) tests and following the principle of simplicity by Hilbert and extending comments by Helmholtz refering to a combination of measurement and analytical treatment. Finally, an easy mathematical fonnation has been created. T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics CY - Kempten, Germany DA - 24.09.2014 PY - 2014 SN - 978-3-00-046740-0 SP - 213 EP - 214 AN - OPUS4-31725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -