TY - JOUR A1 - Appajaiah, Anilkumar A1 - Wachtendorf, Volker A1 - Daum, Werner T1 - Characterization of thermo-oxidative stability of polymer optical fibers using chemiluminescence technique N2 - The thermo-oxidative stability of commercially available polymer optical fibers (POFs) and their components (cores and claddings) was investigated. All the bare POFs (core and cladding only) studied here were based on poly(methyl methacrylate) (PMMA) core. The fibers were exposed to 100 °C/low humidity for about 4200 h. Chemiluminescence (CL) technique was applied to investigate the thermo-oxidative stability and for measuring the transmission loss during exposure a prototype device called multiplexer was used. POFs exhibited variation in thermo-oxidative stability although they possessed identical core material PMMA. This was due to difference in the chemical compositions of claddings. Claddings were more susceptible to the thermo-oxidative degradation compared to cores. The thermo-oxidative degradation of both the cladding and the core was found in POFs as a result of climatic exposure. POFs showed an early drop-off followed by a slow decline of transmission. The early drop-off of transmission was attributed to physical changes like thermal expansion and the slow decline of transmission to chemical changes like oxidative degradation of POFs. A good linear relationship between optical transmission stability and thermo-oxidative stability of POFs was established from these studies. KW - Polymer optical fibers (POFs) KW - Chemiluminescence (CL) KW - Thermo-oxidative stability KW - Aging KW - Optical transmission stability PY - 2006 U6 - https://doi.org/10.1016/j.polymdegradstab.2006.05.006 SN - 0141-3910 SN - 1873-2321 VL - 91 IS - 11 SP - 2605 EP - 2613 PB - Applied Science Publ. CY - London AN - OPUS4-13984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Appajaiah, Anilkumar A1 - Wachtendorf, Volker A1 - Daum, Werner T1 - Climatic exposure of polymer optical fibers: Thermooxidative stability characterization by chemiluminescence N2 - The optical transmission stability was investigated for commercially available polymer optical fibers (POFs) which were exposed to a climate of 92°C and 95% relative humidity for about 3300 h. The optical transmission stability of POFs was correlated to their thermooxidative stability. POFs possessed identical core material, poly(methyl methacrylate), but they differed in the materials used for the claddings. The optical transmission was measured online using a prototype device called multiplexer. The chemiluminescence (CL) technique was applied to characterize the thermooxidative stability and degradation of POFs. CL analysis reveals the thermooxidative degradation of bare POFs (core and cladding), predominantly of the claddings, as a result of climatic exposure. Ultraviolet-visible transmittance measurements demonstrated more changes in the claddings as compared to the cores due to degradation. The CL and optical measurements data indicated that the optical transmission stability of POFs was dependent mainly on the thermooxidative stability of the claddings and their chemical compositions. KW - Ageing KW - Polymer optical fiber KW - Degradation KW - Chemiluminescence KW - Transparency PY - 2007 U6 - https://doi.org/10.1002/app.23955 SN - 0021-8995 SN - 1097-4628 VL - 103 IS - 3 SP - 1593 EP - 1601 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-19072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandes, K. A1 - Daum, Werner A1 - Hofmann, Detlef A1 - Basedau, Frank A1 - Kubowitz, P. T1 - Innovative structural damage detection of bridges by least squares adjustment with constraints T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics CY - Starý Smokovec, Slovakia DA - 2015-09-22 PY - 2015 SN - 978-80-554-1094-4 SP - 18 EP - 19 CY - Zilina AN - OPUS4-34486 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brandes, K. A1 - Daum, Werner A1 - Hofmann, Detlef A1 - Basedau, Frank A1 - Kubowitz, P. T1 - Innovative structural damage detection of bridges by least squares adjustment with constraints N2 - Long-term monitoring of bridges requires the early detection of spreading damage because very often the damage is not really visible. For many decades engineers and scientists relayed on dynamic methods especially modal ones. However, after fundamental tests by the U.S. FHWA in 1993, it became evident that more successful methods should be developed, but no innovation really happened. A substantial innovative detection method started four years ago from Lagrange Multiplier Testing which eventually resulted in experimental verification based on measurement of deflection and curvature of the bridge beam and together the methodological combination of both. T2 - 32nd DANUBIA ADRIA SYMPOSIUM on Advances in Experimental Mechanics CY - Starý Smokovec – High Tatras, Slovakia DA - 22.09.2015 KW - Damage detection of bridges KW - Monitoring KW - Lagrange multiplier test PY - 2016 U6 - https://doi.org/10.1016/j.matpr.2016.03.025 SN - 2214-7853 VL - 3 IS - 4 SP - 942 EP - 946 PB - Elsevier AN - OPUS4-36667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandes, K. A1 - Daum, Werner A1 - Hofmann, Detlef A1 - Kubowitz, P. T1 - Lagrange multiplier test for structural damage of bridges N2 - Detecting spreading damage in bridges is a demanding task for engineers today when the ageing infrastracture of industriaiized countries is degradating more and more. To successfully deal with tbis problem, a really advanced method has been elaborated basing on Langrange Multiplier (LM) tests and following the principle of simplicity by Hilbert and extending comments by Helmholtz refering to a combination of measurement and analytical treatment. Finally, an easy mathematical fonnation has been created. T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics CY - Kempten, Germany DA - 24.09.2014 PY - 2014 SN - 978-3-00-046740-0 SP - 213 EP - 214 AN - OPUS4-31725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brandes, K. A1 - Neitzel, F. A1 - Weisbrich, S. A1 - Daum, Werner T1 - Lagrange-Multiplikatoren (LM) der Ausgleichsrechnung als Indikator für Strukturschäden N2 - Die ständige Überwachung von Bauwerken gewinnt zunehmend an Bedeutung. Mit Blick auf die Nachhaltigkeit ist die Verlängerung der Nutzungsdauer bestehender baulicher Konstruktionen von unschätzbarem Wert, sowohl aus finanziellen Gründen als auch unter Denkmalaspekten. Eine neue Methode zur Detektion von Strukturschädigungen basiert auf einer integrierten Auswertung von Messwerten verschiedener Sensoren nach der Methode der kleinsten Quadrate sowie der Interpretation der dabei auftretenden Langrange-Multiplikatoren. Diese Methode der Schädigungsanalyse wird anhand eines numerischen Beispiels aus einem Vier-Punkt-Biegeversuch mit einem Verbundträger näher erläutert. --------------------------------------------------------------------------------------------------------- Structural health monitoring of structures is gaining increasingly importance. With regard to sustainability it is of great value for both financial reasons (to extend the useful life of existing architectural structures) and the aspects of listed buildings. A new method for the detection of structural damage is based on an integrated analysis of measurements of different sensors according to the method of least squares and the interpretation of the occurring Lagrange Multipliers. This method of damage analysis is illustrated by a numerical example of a four-point bending test with a composite beam. KW - Bauwerk KW - Schädigung KW - Zustandsüberwachung KW - Schadensfrüherkennung KW - Ausgleichsrechnung KW - Lagrange-Multiplikator KW - Construction KW - Damage KW - Structural health monitoring KW - Damage detection KW - Curve fitting KW - Lagrange multiplier PY - 2012 U6 - https://doi.org/10.1524/teme.2012.0239 SN - 0340-837X SN - 0178-2312 SN - 0171-8096 VL - 79 IS - 7-8 SP - 348 EP - 358 PB - Oldenbourg CY - München AN - OPUS4-26385 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Daum, Werner T1 - Optische Messverfahren - unverzichtbares Instrumentarium in der modernen Materialforschung und -prüfung PY - 2002 SN - 0340-837X SN - 0178-2312 SN - 0171-8096 VL - 69 IS - 10 SP - 411 PB - Oldenbourg CY - München AN - OPUS4-1574 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Daum, Werner A1 - Gründer, Klaus-Peter A1 - Kadoke, Daniel A1 - Protz, Christian A1 - Zencker, Uwe T1 - Optical 3D dynamic deformation analysis of a ram container during a drop test T2 - 30th Danubia-Adria symposium on advances in experimental mechanics CY - Primosten, Croatia DA - 2013-09-25 KW - Steel sheet container KW - Drop test KW - Numerical simulation KW - Optical digitization KW - High speed stereo photogrammetry PY - 2013 SN - 978-953-7539-17-7 SP - 45 EP - 46 AN - OPUS4-29414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Daum, Werner A1 - Werthschützky, R. T1 - Strukturintegrierte Sensorik PY - 2012 U6 - https://doi.org/10.1524/teme.2012.9026 SN - 0340-837X SN - 0178-2312 SN - 0171-8096 VL - 79 IS - 7-8 SP - 335 EP - 336 PB - Oldenbourg CY - München AN - OPUS4-26386 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Habel, Wolfgang R. A1 - Krebber, Katerina A1 - Daum, Werner T1 - Results in standardization of FOS to support the use of SHM systems N2 - Measurement and data recording systems are important parts of a holistic Structural Health Monitoring (SHM) system. New sensor technologies such as fiber-optic sensors are often used; however, standards (or at least guidelines) are not yet available or internationally approved. This lack in standardization makes the acceptance of FOS technologies in complex SHM systems substantially difficult. A standard family for different FOS technologies is therefore being developed that should help to design SHM systems in an optimal way. International standardization activities take place in several standardization bodies such as IEC and ASTM, and within SHM societies such as ISHMII. The paper reports on activities in standardization of fiber-optic sensors, on results already achieved, and on newly started projects. Combined activities of fiber sensor experts and SHM experts from Civil Engineering are presented. These contributions should help owners of structures as well as developers of sensors and monitoring systems to select effective and validated sensing technologies. Using these standards, both parties find recommendations how to proceed in development of SHM systems to evaluate the structural behavior based on e.g. standardized fiber optic sensors, and to derive necessary measures, e.g. the optimal maintenance strategy. T2 - Sixth European Workshop on Optical Fibre Sensors CY - Limerick, Ireland DA - 30.05.2016 KW - Fiber-optic sensor KW - Standard KW - Temperature KW - Strain KW - Monitoring KW - Structural health KW - Application PY - 2016 U6 - https://doi.org/10.1117/12.2236863 SN - 0277-786X VL - 9916 SP - 991625-1 EP - 991625-4 AN - OPUS4-37053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -