TY - CONF A1 - Richter, Frank A1 - Köppe, Enrico A1 - Daum, Werner T1 - Tracking deformation history in split Hopkinson pressure bar testing N2 - The stress vs. strain curve of materials is affected the rate of imposed straining. Among the methods for dynamic testing the technique known as 'split Hopkinson pressure bar' (SHPB) has evolved into the most widely used one to exert high-speed straining. The theory behind it comprises simple equations to compute stress and strain. The reliability of the strain analysis can be assessed by digital image correlation (DIC). The present results indicate that the visually observed strain is smaller than predicted by theory. T2 - 32nd Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 KW - Split Hopkinson pressure bar (SHPB) KW - Digital image correlation (DIC) KW - Digitale Bildkorrelation (DIC) KW - Dynamic testing KW - Dynamische Tests KW - Stress-strain curve KW - Spannungs-Dehnungs-Kurve PY - 2015 SN - 978-80-554-1094-4 SP - 174 EP - 175 PB - University of Zilina, Slovakia CY - Zilina AN - OPUS4-35656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Köppe, Enrico A1 - Bartholmai, Matthias A1 - Daum, Werner A1 - Gong, Xin A1 - Hofmann, Detlef A1 - Basedau, Frank A1 - Schukar, Vivien A1 - Westphal, Anja A1 - Sahre, Mario A1 - Beck, Uwe T1 - New self diagnostic fiber optical sensor technique for structural health monitoring N2 - Fiber optic sensors have gained increasing importance in recent years and are well established in many areas of industrial applications. In this paper, we introduce a concept of a self-diagnostic fiber optic sensor. The presented sensor is to resolve the problems of embedded fiber optic sensors in complex structures and to enable the validation under operational conditions. For this purpose, different magnetostrictive coated fiber optic sensors were developed and various experiments were performed to verify their mode of operation and to determine the respective reproducibility. The measuring principle is illustrated by obtained experimental results, which showed a change in wavelength from 1 pm at a magnetic field strength change of 0.25 mT. In addition, the temperature characteristics of the implemented magnetostrictive sensor were analyzed and an experimental factor of 1.5 compared to a reference fiber optic sensor was determined. T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 PY - 2015 SN - 978-80-554-1094-4 SP - 1 EP - 2 CY - Zilina AN - OPUS4-35173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Werner, Klaus-Dieter A1 - Johann, Sergej A1 - Daum, Werner ED - Cosmi, F. T1 - Characterization of the temperature behavior of a piezoresistive accelerometer N2 - Piezoresistive accelerometers use a strain-sensing element, generally made of semiconductor material, e.g., silicon to convert the mechanical motion into an electrical signal. This element is usually designed in form of a cantilever beam loaded with a mass. Acceleration causes bending of the beam, which produces a change of electrical resistance proportional to the applied acceleration. Main advantages of piezoresistive accelerometers in comparison to other types, e.g., piezoelectric and capacitive, is their robust and highly dynamic behavior, which qualifies them for application in high impact shock applications. Mechanical damping is typically implemented with silicon oil in a way that the output signal is undistorted over a wide frequency range. These characteristics principally qualify them for the application in drop tests carried out at BAM, for which they are calibrated over the frequency range from 1 to 4 kHz. However, using silicon oil for damping, has the drawback of temperature dependent change of its viscosity, leading to temperature dependent deviation of the accelerometer’s sensitivity. This study presents experimental results of the temperature behavior of a piezoresistive accelerometer with a dynamic range up to ±5000 g. This type of accelerometer is applied for drop tests which are partially performed at temperatures of -40 or +100 °C. T2 - 34th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Trieste, Italy DA - 19.09.2017 KW - Accelerometer KW - Temperature behavior KW - Drop test PY - 2017 UR - https://www.openstarts.units.it/handle/10077/14921 SN - 978-88-8303-863-1 SP - 93 EP - 95 CY - Trieste AN - OPUS4-42109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -