TY - JOUR A1 - Serrano Munoz, Itziar A1 - Dancette, S. A1 - Verdu, C. A1 - Buffiere, J.-Y. T1 - Influence of Pore Size and Crystallography on the Small Crack HCF Behavior of an A357-T6 Cast Aluminum Alloy N2 - The high-cycle fatigue, small crack propagation behavior of an A357-T6 cast aluminum alloy is investigated. Laboratory X-ray micro-computed tomography (μCT) is used to assist in the manufacturing of two flat fatigue specimens containing subsurface shrinkage pores of different sizes (Pore 1 √A=522μm against Pore 2 √A=280μm). Surface crack monitoring is performed by means of optical microscopy and the cracked specimens are analyzed via scanning electron microscopy and electron backscatter diffraction techniques. The subsurface pores tend to induce intergranular crack nucleation, principally when the grain boundaries are oriented perpendicular to the loading direction. Pore 1 induces a fatigue life reduction of 500.000 cycles when compared to Pore 2. The crystallography is able to influence small crack propagation by slightly decelerating the crack growth rates as well as by altering the crack path topography. Tailoring of the crystallography for improved fatigue resistance requires an investigation of the optimal largest defect to grain size ratio. KW - A357-T6 cast aluminum alloy KW - EBSD analysis KW - Laboratory XµCT KW - Pore size KW - Crack initiation period KW - Crystal plasticity finite element modeling (CPFEM) PY - 2020 U6 - https://doi.org/10.1007/s11661-019-05590-6 SN - 1543-1940 SN - 1073-5623 SP - 1 EP - 12 PB - Springer AN - OPUS4-50206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Shiozawa, D. A1 - Dancette, S. A1 - Verdu, C. A1 - Buffiere, J.-Y. T1 - Torsional fatigue mechanisms of an A357-T6 cast aluminium alloy N2 - The mechanisms controlling the fatigue response of an A357-T6 cast aluminium alloy under cyclic torsional loading are investigated. Surface crack monitoring coupled with Electron BackScattering Diffraction (EBSD) analysis is used to study crack initiation. Determination of S-N curve combined with interrupted in situ fatigue testing using synchrotron tomography allows the study of the propagation behaviour. It is observed that fractographic morphologies depend on the stress level. At intermediate-low stress levels ( τmax < 100 MPa), the grain structure controls the crack initiation and propagation periods. Cracks are usually nucleated in mode II from slip planes close to the specimen axis or perpendicular to it. Mode II crack growth dominates the early stages of crack propagation as mode III inward crack growth is rapidly decelerated. This behaviour leads to the formation of characteristic shallow surface cracks. Once the crack is long enough for the mode II driving force to be overtaken by mode III, propagation branches into ~45 ◦mode I. KW - A357-T6 casting KW - Fractographic observations KW - EBSD analysis KW - X-ray synchrotron tomography KW - Torsional in situ fatigue testing KW - SIF evaluation PY - 2020 U6 - https://doi.org/10.1016/j.actamat.2020.09.046 VL - 201 SP - 435 EP - 447 PB - Elsevier Ltd. AN - OPUS4-51461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -