TY - CONF A1 - Böllinghaus, Thomas A1 - Mente, Tobias A1 - Dabah, Eitan ED - Kulkarni, D.V. ED - Samant, M. ED - Krishnan, S. ED - De, A. ED - Krishnan, J. ED - Patel, H. ED - Bhaduri, A.K. T1 - Trends in investigating hydrogen cracking and diffusion in steel welds N2 - The present contribution highlights recent trends in investigating hydrogen diffusion and cracking in steel welds. For such studies, supermartensitic stainless steels (SMSS) have exemplarily been selected. These materials have been used for offshore and marine constructions for about two decades now. They present a versatility of improved properties such as high strength to thickness ratio, good weldability and good corrosion resistance. However, as shown by respective failure cases, SMSS welds might become prone to hydrogen assisted cracking and the degradation phenomena are more easily to investigate due to the nearly homogeneous martensitic microstructure than in other materials. Generally, it has to be distinguished between cracking that occurs during or shortly after fabrication welding, or during subsequent operation of SMSS components. In order to achieve crack avoidance during fabrication and service, conclusive test sequences have to be applied, ranging from field tests at real components and full scale tests investigating the materials behavior under real service conditions to basic and small scale tests, such as tensile and corrosion tests, oriented more towards a materials ranking. Considerable testing of SMSS welds has been carried out and the present paper particularly summarizes spotlights on 1:1 scale component testing of welded tubulars, slow strain rate testing and basic tests oriented to elucidate the hydrogen behavior and degradation in SMSS weld microstructures. Also, permeation tests, hydrogen dependent degradation of mechanical properties and thermal desorption spectroscopy are adressed. As a specific item, first results of lately conducted investigations for tracking hydrogen movement in such weld microstructures by using high energy synchrotron radiation are elucidated. T2 - IIW International conference on global trends in joining, cutting and surfacing technology CY - Chennai, India DA - 21.07.2011 PY - 2011 SN - 978-81-8487-152-4 SP - 49 EP - 55 PB - Narosa Publ. House AN - OPUS4-26114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dabah, Eitan A1 - Kromm, Arne A1 - Brauser, Stephan A1 - Kannengießer, Thomas T1 - High-energy synchrotron Diffraction study of a Transformation Induced Plasticity Steel During Tensile Deformation T2 - FA 13 Eigenspannungen Besprechungen CY - Remscheid, Germany DA - 2012-06-05 PY - 2012 AN - OPUS4-26062 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brauser, Stephan A1 - Kromm, Arne A1 - Dabah, Eitan A1 - Kannengießer, Thomas A1 - Rethmeier, Michael T1 - Thermal stability of retained austenite in low alloyed TRIP-steel determined by high energy synchrotron radiation N2 - TRIP-steels offer a good combination between strength and ductility. Therefore TRIP-steels are widely used in the automobile industries. The aim of this work is to study the stability of involved phases during heating and to identify the kinetics of the occuring phase transformations. For that purpose, in-situ diffraction measurements, using high energy synchrotron radiation were conducted. The analysis revealed the decomposition of the metastable austenitic phase into carbide and ferrite along the heating process and the regeneration of the austenite by further heating of the sample. KW - Austenite stability KW - Phase transformation KW - TRIP steel KW - Energy dispersive synchrotron X-ray diffraction PY - 2014 DO - https://doi.org/10.4028/www.scientific.net/MSF.772.129 SN - 0255-5476 VL - 772 SP - 129 EP - 133 PB - Trans Tech Publications CY - Aedermannsdorf, Switzerland AN - OPUS4-29700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dabah, Eitan A1 - Kannengießer, Thomas A1 - Eliezer, D. A1 - Böllinghaus, Thomas T1 - Hydrogen interaction with residual stresses in steel studied by synchrotron X-ray diffraction N2 - The residual stress state in a material has an important role in the mechanism of cracking, induced or assisted by hydrogen. In this contribution, the beamline EDDI in BESSY II instrument in Berlin was used in order to investigate the influence of hydrogen upon the residual stresses state existing in a Supermartensitic stainless steel sample. The method used for investigating the residual stresses is the “sinus square ψ” method. This method involves the usage of high energy X-ray diffraction in order to measure the residual stress state and magnitude. It was found that hydrogen presence has a significant influence upon the magnitude of the residual stresses, as its value decreases with high hydrogen content. This effect is reversible, as hydrogen desorbs from the sample the residual stress magnitude gains its initial value before hydrogen charging. KW - Energy dispersive diffraction KW - Hydrogen embrittlement KW - Residual Stress KW - Supermartensitic Steel PY - 2014 DO - https://doi.org/10.4028/www.scientific.net/MSF.772.91 SN - 0255-5476 VL - 772 SP - 91 EP - 95 PB - Trans Tech Publications CY - Aedermannsdorf, Switzerland AN - OPUS4-29673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dabah, Eitan A1 - Kannengießer, Thomas A1 - Mente, Tobias A1 - Beyer, Katrin A1 - Brauser, Stephan T1 - Quantification of hydrogen effective diffusion coefficients and effusion behavior in duplex stainless steel weld metals N2 - Modern methods like carrier gas hot extraction enable the quantification of dissolved hydrogen as well as the determination of the hydrogen trapping and diffusion behavior. This method was applied in order to compare for the first time the hydrogen diffusion and trapping behavior in electrochemically charged and welded duplex stainless steel (1.4462). Characteristic extraction temperatures (400, 650, and 900 °C) were used to quantify the amounts of diffusible hydrogen and trapped hydrogen for the base material and the weld metal, and in order to calculate the effective diffusion coefficients corresponding to the specific temperature. The comparison of the charging methods showed that electrochemically charged samples have a higher content of diffusible hydrogen than the welded samples. In addition, the effusion times increase in welded samples, which indicate a higher amount of trapped hydrogen. In electrochemically charged weld samples, a significant lower concentration of hydrogen was determined than in the base material. In addition, the effective diffusion coefficients were calculated for every microstructure and charging method. It was found that the base material has a higher effective hydrogen diffusion coefficient than that of the weld metal. This effect is due to the tortuous path of hydrogen diffusion in the weld metal. KW - Carrier gas hot extraction KW - Diffusion KW - Effusion KW - Hydrogen KW - Trapping PY - 2013 DO - https://doi.org/10.1007/s40194-013-0051-5 SN - 0043-2288 SN - 1878-6669 VL - 57 IS - 4 SP - 561 EP - 567 PB - Springer CY - Oxford AN - OPUS4-29417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Dabah, Eitan A1 - Griesche, Axel A1 - Beyer, Katrin A1 - Solórzano, E. A1 - Kannengießer, Thomas ED - Kannengießer, Thomas ED - Babu, S. S. ED - Komizo, Y. ED - Ramirez, A.J. T1 - In situ measurements of hydrogen diffusion in duplex stainless steels by neutron radiography N2 - Hydrogen embrittlement (HE) is a widely known phenomenon and under investigation already for more than a century. This phenomenon, though thoroughly studied, is not yet completely understood, and so far, there are several suggested mechanisms that try to explain the occurrence of HE. One important factor of understanding the HE phenomenon and predicting hydrogen-assisted failure is the descent knowledge about the hydrogen transport behaviour in the material. Neutron radiography is a proven method for tracking hydrogen diffusion and it was applied successfully in various research studies. In the presented study, we examined the hydrogen effusion behaviour in duplex stainless steel by means of neutron radiography and calculated the effective diffusion coefficient from the obtained transmission images. KW - Neutron radiography KW - Hydrogen diffusion KW - Duplex stainless steels KW - Hydrogen embrittlement PY - 2014 SN - 978-3-319-06144-3 SN - 978-3-319-06145-0 DO - https://doi.org/10.1007/978-3-319-06145-0_9 SP - 155 EP - 163 PB - Springer AN - OPUS4-31357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel A1 - Dabah, Eitan A1 - Kardjilov, N. A1 - Hilger, A. A1 - Manke, I. A1 - Kannengießer, Thomas T1 - Imaging of hydrogen in steels using neutrons N2 - We investigated the hydrogen distribution spatially and temporally in technical iron at room temperature. Samples were charged electrochemically and subsequently analysed by means of neutron radiography and tomography. The radiographic images allowed for a time-resolved analysis of hydrogen fluxes. The three-dimensional distribution of hydrogen measured by neutron tomography delivered valuable information for the damage analysis of hydrogen-induced cracks. For the first time hydrogen concentration gradients inside the material could be detect directly together with the cracks. The neutron radiography and tomography results were gained at the Research Reactor BER II of the HZB in Berlin. KW - Hydrogen embrittlement KW - Hydrogen diffusion KW - Neutron tomography KW - Blister PY - 2014 DO - https://doi.org/10.3139/146.111043 SN - 1862-5282 VL - 105 IS - 7 SP - 640 EP - 644 PB - Carl Hanser CY - München AN - OPUS4-31084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel A1 - Dabah, Eitan A1 - Kannengießer, Thomas A1 - Kardjilov, N. A1 - Hilger, A. A1 - Manke, I. T1 - Three-dimensional imaging of hydrogen blister in iron with neutron tomography N2 - We investigated hydrogen embrittlement and blistering in electrochemically hydrogen-charged technical iron samples at room temperature. Hydrogen-stimulated cracks and blisters and the corresponding hydrogen distributions were observed by neutron tomography. Cold neutrons were provided by the research reactor BER II to picture the sample with a spatial resolution in the reconstructed three-dimensional model of ~25 µm. We made the unique observation that cracks were filled with molecular hydrogen and that cracks were surrounded by a 50 µm wide zone with a high hydrogen concentration. The zone contains up to ten times more hydrogen than the bulk material. The hydrogen enriched zone can be ascribed to a region of increased local defect density. Hydrogen also accumulated at the sample surface having the highest concentration at blistered areas. The surfaces of the brittle fractured cracks showed micropores visualized by scanning electron microscopy. The micropores were located at grain boundaries and were surrounded by stress fields detected by electron backscattered diffraction. The cracks clearly originated from the micropores. KW - Hydrogen embrittlement KW - Hydrogen diffusion KW - In situ KW - Neutron tomography KW - Iron PY - 2014 DO - https://doi.org/10.1016/j.actamat.2014.06.034 SN - 1359-6454 SN - 1873-2453 VL - 78 SP - 14 EP - 22 PB - Elsevier Science CY - Kidlington AN - OPUS4-31068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel A1 - Dabah, Eitan A1 - Kannengießer, Thomas A1 - Hilger, A. A1 - Kardjilov, N. A1 - Manke, I. A1 - Schillinger, B. T1 - Measuring hydrogen distributions in iron and steel using neutrons N2 - Neutron tomography has been applied to investigate the mechanism of hydrogen assisted cracking in technical iron and supermartensitic steel. Rectangular technical iron block samples showed blistering due to intense hydrogen charging and the tomographic method revealed in situ the spatial distribution of hydrogen and cracks. Hydrogen accumulated in a small region around cracks and the cracks are filled with hydrogen gas. Cracks close to the surface contained no hydrogen. Hydrogenous tensile test samples of supermartensitic steel were pulled until rupture and showed hydrogen accumulations at the notch base and in the plastically deformed region around the fracture surface. T2 - 10th World Conference on Neutron Radiography (WCNR) CY - Grindelwald, Switzerland DA - 05.10.2014 PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-348022 DO - https://doi.org/10.1016/j.phpro.2015.07.062 SN - 1875-3892 VL - 69 SP - 445 EP - 450 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-34802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel A1 - Dabah, Eitan A1 - Kannengießer, Thomas T1 - Neutron imaging of hydrogen in iron and steel N2 - Neutron radiography and tomography have been used for a time resolved in situ analysis and a 3D mapping of hydrogen diffusion in iron and steel. Samples were electrochemically charged with hydrogen and afterwards neutron transmission images were taken. Hydrogen diffusion coefficients in duplex stainless steel were determined at 623 K by measuring and comparing the sample's mean intensity with a hydrogen-free reference sample and subsequent normalisation to standards with known hydrogen content. In technical iron and in supermartensitic stainless steel the hydrogen distributions have been investigated. The radiographic images in iron show blisters, cracks and the distribution of molecular hydrogen inside cracks. The analysis of the diffusion behaviour of hydrogen out of a blister illustrates the capabilities of the method with respect to time and spatial resolution. The neutron tomography of supermartensitic tensile stressed samples illustrates the capability to visualise hydrogen distributions three-dimensionally. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- On a utilisé la radiographie neutronique et la tomographie pour une analyse in situ à résolution temporelle et une cartographie 3D de la diffusion de l'hydrogène dans le fer et l'acier. On a chargé des échantillons par électrochimie avec de l'hydrogène et ensuite on a pris des images par émission de neutrons. On a déterminé les coefficients de diffusion de l’hydrogène dans l'acier inoxydable duplex à 623 K en mesurant et en comparant l'intensité moyenne de l'échantillon avec un échantillon de référence sans hydrogène et une normalisation subséquente à des échantillons références à teneur connue en hydrogène. On a examiné la distribution d'hydrogène dans le fer technique et dans l'acier inoxydable supermartensitique. Les images radiographiques du fer montrent des soufflures, des fissures, et la distribution de l'hydrogène moléculaire à l'intérieur des fissures. L'analyse du comportement de diffusion de l'hydrogène hors d'une soufflure illustre les possibilités de la méthode par rapport à la résolution temporelle et spatiale. La tomographie neutronique des échantillons supermartensitiques chargés en traction illustre la capacité de visualiser les distributions d'hydrogène en trois dimensions. KW - Neutron radiography KW - Hydrogen KW - Diffusion KW - Iron KW - Steel KW - Blister KW - Hydrogen assisted cracking PY - 2015 DO - https://doi.org/10.1179/1879139514Y.0000000162 SN - 0008-4433 VL - 54 IS - 1 SP - 38 EP - 42 PB - Canadian Institute of Mining and Metallurgy CY - Montreal AN - OPUS4-32809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dabah, Eitan A1 - Pfretzschner, Beate A1 - Schaupp, Thomas A1 - Kardjilov, N. A1 - Manke, I. A1 - Boin, M. A1 - Woracek, R. A1 - Griesche, Axel T1 - Time-resolved Bragg-edge neutron radiography for observing martensitic phase transformation from austenitized super martensitic steel N2 - Neutron Bragg-edge imaging was applied for the visualization of a γ-Austenite to α'-martensite phase transformation. In the present study, a super martensitic stainless steel sample was heated until complete austenitization and was subsequently cooled down to room temperature. The martensitic phase Transformation started at Ms = 190 °C. Using a monochromatic neutron beam with λ = 0.390 nm, the transmitted intensity was significantly reduced during cooling below Ms, since the emerging martensitic phase has a higher attenuation coefficient than the austenitic phase at this wavelength. The phase Transformation process was visualized by filming the transmission images from a scintillator screen with a CCD camera with a temporal resolution of 30 s and a spatial resolution of 100 µm. KW - Neutron imaging KW - Bragg-edge imaging KW - Phase transformation PY - 2017 DO - https://doi.org/10.1007/s10853-016-0642-9 SN - 0022-2461 SN - 1573-4803 VL - 52 IS - 6 SP - 3490 EP - 3496 AN - OPUS4-38574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -