TY - CONF A1 - Brunier-Coulin, F. A1 - Sarrat, J.-L. A1 - Cuéllar, Pablo A1 - Philippe, P. T1 - Experimental investigation of impinging jet erosion on model cohesive granular materials N2 - Erosion of soils affects both natural landscapes and engineering constructions as embankment dams or levees. Improving the safety of such earthen structures requires in particular finding out more about the elementary mechanisms involved in soil erosion. Towards this end, an experimental work was undertaken in three steps. First, several model materials were developed, made of grains (mostly glass beads) with solid bridges at particle contacts whose mechanical yield strength can be continuously varied. Furthermore, for most of them, we succeeded in obtaining a translucent system for the purpose of direct visualization. Second, these materials were tested against surface erosion by an impinging jet to determine a critical shear stress and a kinetic coefficient. Note that an adapted device based on optical techniques (combination of Refractive Index Matching and Planar Laser Induced Fluorescence) was used specifically for the transparent media. Third, some specifically developed mechanical tests, and particularly traction tests, were implemented to estimate the mechanical strength of the solid bridges both at micro-scale (single contact) and at macro-scale (sample) and to investigate a supposed relationship with soil resistance to erosion. T2 - 8th International Conference on Micromechanics on Granular Media CY - Montpellier, France DA - 03.07.2017 KW - Erosion onset KW - Experimental testing KW - Cohesive granular media KW - RIM-PLIF techniques PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-411215 VL - 140 SP - Paper 08002, 1 EP - Paper 08002, 4 PB - The European Physical Journal (EPJ) - Web of Conferences AN - OPUS4-41121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Philippe, P. A1 - Cuéllar, Pablo A1 - Brunier-Coulin, F. A1 - Luu, L.-H. A1 - Benahmed, N. A1 - Bonelli, S. A1 - Delenne, J.-Y. T1 - Physics of soil erosion at the microscale N2 - We focus here on the major and still relevant issue of soil erosion by fluid flows, and more specifically on the determination of both a critical threshold for erosion occurrence and a kinetics that specifies the rate of eroded matter entrainment. A state-of-the-art is first proposed with a critical view on the most commonly used methods and erosion models. It is then discussed an alternative strategy, promoting the use of model materials that allow systematic parametric investigations with the purpose of identifying more precisely the local mechanisms responsible for soil particle erosion and ultimately quantifying both critical onsets and kinetics, possibly through existing or novel empirical erosion laws. Finally, we present and discuss several examples following this methodology, implemented either by means of experiments or numerical simulations, and coupling erosion tests in several particular hydrodynamical configurations with wisely selected mechanical tests. T2 - 8th International Conference on Micromechanics on Granular Media CY - Montpellier, France DA - 03.07.2017 KW - Erosion phenomena KW - Onset of jet erosion KW - LBM-DEM numerical simulation KW - Experimental testing KW - PLIF-RIM optical techniques PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-411198 VL - 140 SP - Paper 08014, 1 EP - Paper 08014, 4 PB - The European Physical Journal (EPJ) - Web of Conferences AN - OPUS4-41119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -