TY - JOUR A1 - Baeßler, Matthias A1 - Rücker, Werner A1 - Cuéllar, Pablo A1 - Georgi, Steven A1 - Karabeliov, Krassimire T1 - Large-scale testing facility for cyclic axially loaded piles N2 - Offshore piles have to withstand predominantly cyclic axial loads when they are installed in multi-pile configurations, as in jacket foundations. The dimensions of the pile are governed by both the internal capacity and the fatigue behaviour of the steel cross-section as well as by its external capacity in the pile-soil interaction. Owing to the large numbers of piled foundations required for current and future offshore wind farms, there is an urgent need to optimize the dimensions and related costs of single piles. With regard to the pile capacity, two major topics of research are the determination of possible capacity gains due to pile ageing effects and proper consideration of cyclic degradation. In order to investigate both effects, a large-scale testing facility has been constructed at the BAM TTS site in Horstwalde near Berlin. This open-air facility allows large tubular driven piles to be loaded cyclically in both tension and compression while studying the ageing effects by introducing delays between the testing campaigns. First results already show a moderate increase in pile capacity over time. Concerning the anticipated capacity degradation of cyclically loaded piles, preliminary results show an unexpected behaviour. Additional tests are currently being conducted for further clarification. KW - Steel driven piles KW - Offshore foundations KW - Cyclic axial loading KW - Pile ageing KW - Large-scale field testing PY - 2013 U6 - https://doi.org/10.1002/stco.201310028 SN - 1867-0520 SN - 1867-0539 VL - 6 IS - 3 SP - 200 EP - 206 PB - Ernst & Sohn CY - Berlin AN - OPUS4-29535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -