TY - JOUR A1 - Brunier-Coulin, F. A1 - Cuéllar, Pablo A1 - Philippe, P. T1 - Erosion onset of a cohesionless granular medium by an immersed impinging round jet N2 - Among different devices developed quite recently to quantify the resistance to erosion of natural soil within the broader context of dyke safety, the most commonly used is probably the jet erosion test in which a scouring crater is induced by impingement of an immersed water jet. A comprehensive experimental investigation on the jet erosion in the specific situation of a cohesionless granular material is presented here. The tests were performed by combining special optical techniques allowing for an accurate measurement of the scouring onset and evolution inside an artificially translucent granular sample. The impinging jet hydrodynamics are also analyzed, empirically validating the use of a self-similar theoretical framework for the laminar round jet. The critical conditions at the onset of erosion appear to be best described by a dimensionless Shields number based on the inertial drag force created by the fluid flow on the eroded particles rather than on the pressure gradients around them. To conclude, a tentative empirical model for the maximal flow velocity initiating erosion at the bottom of the scoured crater is put forward and discussed in the light of some preliminary results. KW - Jet erosion KW - Cohesionless granular soil KW - Jet hydrodynamics KW - Erosion onset KW - Experimental optical techniques RIM-PLIF PY - 2017 U6 - https://doi.org/10.1103/PhysRevFluids.2.034302 SN - 2469-990X VL - 2 IS - 3 SP - Article 034302, 1 EP - 19 AN - OPUS4-39426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo A1 - Benseghier, Z. A1 - Luu, L.-H. A1 - Bonelli, S. A1 - Delenne, J.-Y. A1 - Radjai, F. A1 - Philippe, P. T1 - Numerical insight into the micromechanics of jet erosion of a cohesive granular material N2 - Here we investigate the physical mechanisms behind the surface erosion of a cohesive granular soil induced by an impinging jet by means of numerical simulations coupling fluid and grains at the microscale. The 2D numerical model combines the Discrete Element and Lattice Boltzmann methods (DEM-LBM) and accounts for the granular cohesion with a contact model featuring a paraboloidal yield surface. Here we review first the hydrodynamical conditions imposed by the fluid jet on a solid granular packing, turning then the attention to the impact of cohesion on the erosion kinetics. Finally, the use of an additional subcritical debonding damage model based on the work of Silvani and co-workers provides a novel insight into the internal solicitation of the cohesive granular sample by the impinging jet. T2 - 8th International Conference on Micromechanics on Granular Media CY - Montpellier, France DA - 03.07.2017 KW - Micromechanical modelling KW - LBM-DEM KW - Jet erosion KW - Granular cohesion KW - Subcritical debonding PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-411186 VL - 140 SP - Paper 15017, 1 EP - Paper 15017, 4 PB - The European Physical Journal (EPJ) - Web of Conferences AN - OPUS4-41118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo A1 - Benseghier, Z. A1 - Luu, L.-H. A1 - Bonelli, S. A1 - Delenne, J.-Y. A1 - Radjai, F. A1 - Philippe, P. T1 - Micromechanics of jet erosion on cohesive soils - A coupled LBM-DEM modelling approach N2 - Here we investigate the physical mechanisms behind the surface erosion of a cohesive granular soil induced by an impinging jet by means of numerical simulations coupling fluid and grains at the microscale. The 2D numerical model combines the Discrete Element and Lattice Boltzmann methods (DEM-LBM) and accounts for the granular cohesion with a contact model featuring a paraboloidal yield surface. Here we review first the hydrodynamical conditions imposed by the fluid jet on a solid granular packing, turning then the attention to the impact of cohesion on the erosion kinetics. Finally, the use of an additional subcritical debonding damage model based on the work of Silvani and co-workers provides a novel insight into the internal solicitation of the cohesive granular sample by the impinging jet. T2 - 8th International Conference on Micromechanics on Granular Media CY - Montpellier, France DA - 03.07.2017 KW - Micromechanical modelling KW - LBM-DEM KW - Jet erosion KW - Granular cohesion KW - Subcritical debonding PY - 2017 AN - OPUS4-41122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -