TY - JOUR A1 - Cuéllar, Pablo A1 - Baeßler, Matthias A1 - Georgi, Steven A1 - Rücker, Werner ED - Triantafyllidis, T. T1 - Special issues for the coupled transient simulation of laterally loaded offshore piles and novel experimental findings T2 - Workshop Gründung von Offshore-Windenergieanlagen CY - Karlsruhe, Germany KW - Offshore pile foundation KW - Cyclic lateral load KW - Pore pressure accumulation KW - Model testing PY - 2010 SN - 0453-3267 IS - 172 SP - 117 EP - 138 CY - Karlsruhe AN - OPUS4-24496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Cuéllar, Pablo A1 - Pastor, M. A1 - Mira, P. A1 - Fernández-Merodo, J.A. A1 - Baeßler, Matthias A1 - Rücker, Werner ED - Benz, T. ED - Nordal, S. T1 - Numerical investigations for the pile foundation of an offshore wind turbine under transient lateral load N2 - Numerical analysis can be useful for the investigation of important aspects of offshore foundation prototypes that otherwise could hardly be studied experimentally, like the evolution of pore-water pressure around the monopile foundation of an offshore wind turbine under extreme loading. A combination of mixed pressuredisplacement formulations along with a constitutive model for sands based on the Generalized Plasticity Theory can replicate accurately the soil behaviour in saturated conditions. However, additional issues must be taken into account in order to perform numerical simulations of offshore piles. Some implications of the Babuska-Brezzi restriction, as well as considerations about the pile-soil interface and suitable solution strategies are discussed here. Due to the high cost of the transient analysis, the parallel computation offers a promising perspective, but can be complex and needs to be implemented carefully in order to avoid a performance deterioration. A brief overview on current trends and functional software is given here. T2 - 7th European conference on numerical methods in geotechnical engineering (NUMGE 2010) CY - Trondheim, Norway DA - 2010-06-02 KW - Offshore pile foundation KW - Cyclic lateral load KW - Pore pressure accumulation PY - 2010 SN - 978-0-415-59239-0 SP - 913 EP - 919 PB - Taylor & Francis AN - OPUS4-21572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cuéllar, Pablo A1 - Baeßler, Matthias A1 - Rücker, Werner T1 - Ratcheting convective cells of sand grains around offshore piles under cyclic lateral loads N2 - Sand densification around the pile has traditionally been regarded as an explanation for the grain migration and soil subsidence that often occur around cyclic laterally loaded piles embedded in sand. Supported by new empirical evidence, this paper proposes that, additionally to some soil densification around the pile, the main cause for the continuous "steady-state" grain migration is a convective cell flow of sand grains in the vicinities of the pile head. Such convective flow would be caused by a ratcheting mechanism triggered by the cyclic low-frequency lateral displacements of the pile. Furthermore, the experimental results suggest that the limit between the convective cell and the static soil is marked by a distinct direct shear surface. This might shed some light into the complex phenomena related to the pile-soil interaction in the upper layers of the bedding, which are normally the main contributor for the lateral load-bearing capacity of piles. KW - Grain migration KW - Pile foundation KW - Cyclic lateral load KW - Ratcheting KW - Convection KW - Densification PY - 2009 U6 - https://doi.org/10.1007/s10035-009-0153-3 SN - 1434-5021 SN - 1434-7636 SP - 1 EP - 12(?) PB - Springer CY - Berlin ; Heidelberg AN - OPUS4-20104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -