TY - CONF A1 - Baeßler, Matthias A1 - Cuéllar, Pablo A1 - Schepers, Winfried T1 - VERBATIM: Project Introduction and Large Scale Experiments N2 - The presentation summarizes the scope of the joint project VERBATIM on buckling of large Monopiles. The presented work from the authors focusses on the experimental field tests of large predented piles during driving and a numerical investigation on the observed buckling behaviour. T2 - Colloquium „Buckling of Offshore Wind Energy Structures“ CY - Berlin, Germany DA - 14.02.2024 KW - Buckling KW - Offshore KW - Wind Energy Structures KW - Monopiles KW - Pile-Tip-Buckling PY - 2024 AN - OPUS4-59535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Baeßler, Matthias A1 - Cuéllar, Pablo A1 - Georgi, Steven A1 - Karabeliov, Krassimire A1 - Rücker, Werner A1 - Johnsen, Björn ED - Durstewitz, M. ED - Lange, B. T1 - Uncharted Territory on the Seabed - Monitoring Procedures and Assessment Model for the Foundations of Offshore Wind Turbines N2 - Offshore wind turbines enter unknown territory, especially where the foundations are concerned. This is because offshore wind power can only make use of the experience from the common offshore constructions used by the oil and gas industry to a limited extent. The offshore wind industry has tried to reduce foundation dimensions, especially the pile lengths, as much as possible compared with those of the oil and gas industry. This is because with the large number of wind turbines involved it can provide considerable economic advantages. On the other hand, the stability of the foundations is additionally at risk because due to the much larger number of cyclic loads they are subjected to it is very difficult to predict how they will behave. Since offshore wind farms are manufactured in series, every systematic fault in the foundation acts as a series fault for a large number of turbines. This calls for monitoring – and the right dimensions of pile foundation, the most common type of foundations used for wind turbines KW - Offshore wind turbines KW - Field tests KW - Axial pile capacity PY - 2017 SN - 978-3-662-53178-5 DO - https://doi.org/10.1007/978-3-662-53179-2 SP - 61 EP - 67 PB - Springer AN - OPUS4-39341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Taylor, G.R. A1 - Tan, R. A1 - O´Brien, A.S. A1 - Baeßler, Matthias A1 - Cuéllar, Pablo A1 - Lane, J.S. A1 - Evans, E. T1 - The use of physical model testing in the development of models for potential impact assessment on the UK rail network N2 - Most railway embankments in the UK were built in the Victorian era and are of end-tipped construction using materials (usually cohesive) excavated from adjacent cuttings, resulting in a clod-and-matrix structure. Historically, there has been a lack in understanding of the mechanical behaviour of such railway embankments. In the next decade railway traffic in the UK, particularly freight, is forecast to grow considerably. Consequently, there is a need to improve the understanding of how increases in rail traffic loading may influence the mechanical behaviour of railway embankments and thus track performance. The Rail Safety and Standards Board in conjunction with Network Rail is currently undertaking a programme of applied research into this topic. As part of these studies a programme of physical model tests has been carried out. Physical model tests can provide high quality data on system performance under a large range of loading conditions and geometrical configurations. The data can be generated rapidly, with test periods of weeks or months rather than years or decades. Additionally, boundary conditions are well-defined and controlled, compared with the complex situations encountered in full scale embankments in the field. This paper summarises the physical model test programme, the development of the test set-up, the tests themselves and the conclusions drawn. T2 - European Conference on Soil Mechanics and Geotechnical Engineering CY - Edinburgh, Scotland, UK DA - 13.09.2015 KW - Railway embankment KW - Clay fill KW - Physical model testing PY - 2015 SN - 978-0-7277-6067-8 DO - https://doi.org/10.1680/ecsmge.60678 SP - 361 EP - 366 AN - OPUS4-39374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Bronsert, Jeffrey A1 - Cuéllar, Pablo A1 - Rücker, Werner ED - Pombo, J. T1 - The stability of ballasted tracks supported on vibrating bridge decks, abutments and transition zones N2 - The track on bridges is affected by cyclic and dynamic action arising from the train passage and the reaction of the track supporting structure. Concerning the track, the current bridge design procedures include two major engineering tasks: On the one hand the stability of the track supported on the bridge deck has to be satisfied. In order to reduce the deterioration of the track the elasticity of the track has to be adapted for the stiff bridge deck. Furthermore, lateral stability has also to be satisfied. The vibration of the bridge structure has to be taken into account because it can affect the stability of the ballasted track. On the other hand the transition zone between bridge structure, abutment and the track on the subgrade is a matter of permanent concern. The changes in stiffness, in the dynamic behavior arising from the rolling stock and the relative deflection between the bridge structure and the abutment induce a nearly unavoidable problem for the long term behaviour on the track. BAM has conducted intensive experimental work to study the behaviour of the ballasted track on dynamically excited bridges. The state of the art is a design value for the deck acceleration of 0.35 g as established in the ENV 1991-1. In our experimental investigations the design value was verified. The influence of a frequency content higher than 30 Hz and of single vibration amplitudes on the track deterioration was evaluated. Both vertical and lateral stability were investigated. The influence of vibrations on the lateral stability can be more severe since the lateral stability could involve a sudden failure of the track. Furthermore, a simulation tool was developed to calculate the lateral stability on a vibrating bridge deck. For this simulation tool a parameter study was undertaken [1] where combinations of the curvature of the bridge-track system, the design temperature and the bridge deck vibrations were investigated. Parts of this study are incorporated in this paper. In a current research project the investigations are extended to the interaction of the train-track-dynamics and the long term behaviour of the transition zone. The main emphasis is on the integration of the possible deterioration of the structural components in the numerical modelling of the relevant structural elements of the vehicle, the bridge and bridge abutment structure. An outlook is given to a complete model for the assessment of the track behaviour at railway bridges. T2 - 1st international conference on railway technology: research, development and maintenance CY - Las Palmas, Gran Canaria, Spain DA - 18.04.2012 KW - Ballast KW - Acceleration KW - Bridge deck KW - Track deterioration KW - Track stability KW - Transition zone PY - 2012 SN - 978-1-905088-53-9 DO - https://doi.org/10.4203/ccp.98.13 SN - 1759-3433 N1 - Serientitel: Civil-Comp Proceedings – Series title: Civil-Comp Proceedings VL - 98 IS - Paper 13 SP - 1 EP - 20 PB - Civil Comp Press AN - OPUS4-26900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karabeliov, Krassimire A1 - Cuéllar, Pablo A1 - Baeßler, Matthias A1 - Rücker, Werner T1 - System identification of inverse, multimodal and nonlinear problems using evolutionary computing - Application to a pile structure supported on nonlinear springs N2 - This paper deals with the system identification of a mechanical structure supported by nonlinear springs subjected to an external load. If all mechanical parameters of the system were known, the displacement of the system subjected to this load could be easily calculated. However, the monitoring applications often deal with the inverse problem. The loads and displacements of the system are known and certain mechanical Parameters of the system are sought. The solution of such inverse problems can be difficult, especially when they have a nonlinear and multimodal character, which often makes them appear intractable at first sight. However, evolutionary computing can be applied to solve this inverse, nonlinear and multimodal problem. Sometimes a prior knowledge exists on certain system properties, which is difficult to implement into analytical or numerical solvers. This knowledge can play a decisive role in identifying the System properties and it can be easily included as a boundary condition when applying evolutionary algorithms. This article discusses how and under what conditions the unknown spring resistances can be identified. The practical application of this procedure is exemplified here with the mechanical system of a pile foundation. KW - Evolutionary computing KW - Inverse problem KW - Multimodal solution KW - System identification KW - Pile monitoring PY - 2015 DO - https://doi.org/10.1016/j.engstruct.2015.07.034 SN - 0141-0296 SN - 1873-7323 VL - 101 SP - 609 EP - 620 AN - OPUS4-39310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Baeßler, Matthias A1 - Cuéllar, Pablo A1 - Victor, A. A1 - Lüddecke, F. ED - Triantafyllidis, T. T1 - Stability and large deformations of slender structures supported by soil materials N2 - The stability and geometric nonlinearities of slender structures are a major topic in structural design. While this topic is most relevant in the field of Structural Engineering, e.g. for steel or concrete structures, only few applications take the role of soil-structure-interaction explicitly into account. The focus of this paper is placed on the impact of soil support and its modelling for the buckling analysis based on examples both for pile foundations and for railway track stability. The general interaction between steel design and the geotechnical input will be addressed. The paper discusses and summarizes a range of subtopics based on experience and current research at the author’s institute. KW - Buckling soil-structure-interaction offshore piles track PY - 2020 SN - 978-3-030-28515-9 SN - 978-3-030-28516-6 DO - https://doi.org/10.1007/978-3-030-28516-6 SN - 1613-7736 SN - 1860-0816 VL - 91 SP - 355 EP - 369 PB - Springer CY - Cham, Switzerland AN - OPUS4-49166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cuéllar, Pablo A1 - Baeßler, Matthias A1 - Georgi, Steven A1 - Rücker, Werner ED - Triantafyllidis, T. T1 - Special issues for the coupled transient simulation of laterally loaded offshore piles and novel experimental findings T2 - Workshop Gründung von Offshore-Windenergieanlagen CY - Karlsruhe, Germany KW - Offshore pile foundation KW - Cyclic lateral load KW - Pore pressure accumulation KW - Model testing PY - 2010 SN - 0453-3267 IS - 172 SP - 117 EP - 138 CY - Karlsruhe AN - OPUS4-24496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo A1 - Baeßler, Matthias A1 - Rücker, Werner T1 - Relevant factors for the liquefaction susceptibility of cyclically loaded offshore monopiles in sand N2 - The offshore foundations may exhibit a relatively high liquefaction susceptibility due to the full saturation of the porous seabed and the cyclic nature of the typical offshore loads. Here, the particular relevance of some of the main factors that affect the liquefaction susceptibility of an offshore monopile will be addressed, focusing on the possibility of a progressive accumulation of residual pore water pressure within the saturated soil around a monopile under cyclic lateral loading. The discussion is based on numerical results obtained with a coupled FE model of the offshore foundation which includes the Biot-Zienkiewicz u-p model. A constitutive model of the Generalized Plasticity type has been used for the soil in order to reproduce important features of its behaviour under cyclic loading. This paper presents the findings derived from a parametric study of the problem and shows that the accumulation of residual pore pressure can produce significant changes of the pile's behaviour under external loading. The paper also investigates the effects caused by the loading from a realistic storm of moderate magnitude and the consequential transient degradation of the foundation's stiffness. T2 - Poromechanics V - 5th Biot conference on poromechanics CY - Vienna, Austria DA - 2013-07-10 KW - Soil liquefaction KW - Cyclic loads KW - Piles KW - Sand (hydraulic) KW - Offshore structures PY - 2013 SN - 978-0-7844-1299-2 DO - https://doi.org/10.1061/9780784412992.160 SP - 1336 EP - 1345 AN - OPUS4-28873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cuéllar, Pablo A1 - Baeßler, Matthias A1 - Rücker, Werner T1 - Ratcheting convective cells of sand grains around offshore piles under cyclic lateral loads N2 - Sand densification around the pile has traditionally been regarded as an explanation for the grain migration and soil subsidence that often occur around cyclic laterally loaded piles embedded in sand. Supported by new empirical evidence, this paper proposes that, additionally to some soil densification around the pile, the main cause for the continuous "steady-state" grain migration is a convective cell flow of sand grains in the vicinities of the pile head. Such convective flow would be caused by a ratcheting mechanism triggered by the cyclic low-frequency lateral displacements of the pile. Furthermore, the experimental results suggest that the limit between the convective cell and the static soil is marked by a distinct direct shear surface. This might shed some light into the complex phenomena related to the pile-soil interaction in the upper layers of the bedding, which are normally the main contributor for the lateral load-bearing capacity of piles. KW - Grain migration KW - Pile foundation KW - Cyclic lateral load KW - Ratcheting KW - Convection KW - Densification PY - 2009 DO - https://doi.org/10.1007/s10035-009-0153-3 SN - 1434-5021 SN - 1434-7636 SP - 1 EP - 12(?) PB - Springer CY - Berlin ; Heidelberg AN - OPUS4-20104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Cuéllar, Pablo A1 - Baeßler, Matthias T1 - Probabilistic approaches to the design and assessment of offshore foundations considering spatially varying site conditions N2 - In this contribution, we consider two applications in which probabilistic approaches can potentially complement or enhance the design and assessment of offshore wind turbine foundations. First, we illustrate in a numerical example that probabilistic modelling can be helpful in dealing with chang-es in turbine locations during the planning phase of an offshore wind farm. In this case, spatial probabilistic modelling of the ground conditions enables (a) an inference of the soil properties at the modified turbine location from field data collected at different locations across an offshore wind farm site and (b) an optimisation of further site investigations. Second, we discuss the uncer-tainties and risks associated with the installation of large diameter monopiles in soils with hetero-geneities such as strong layers and/or embedded boulders. Subsequently, we present a concept for modelling, understanding, and managing these risks based on a probabilistic model of the subgrade conditions, monopile, and subgrade-pile-interaction. T2 - 3rd International Conference on Structural Integrity for Offshore Energy Industry (SI 2021) CY - Online meeting DA - 15.11.2021 KW - Probabilistic modelling KW - Spatially varying ground conditions KW - Foundation reliability analysis KW - Monopile installation risks PY - 2022 SN - 978-1-8383226-3-2 SP - 9 EP - 17 AN - OPUS4-54531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -