TY - CONF A1 - Cuéllar, Pablo T1 - Deep foundations for offshore wind turbines T1 - Cimentaciones profundas para Aerogeneradores marinos N2 - In this lecture, both the physical behaviour and the general design procedures for deep foundations in the context of the offshore wind energy generation are presented. The first part of the lecture deals with the phenomenology and design of the pile foundations relative to the bearing of axial loads. The second part dwelves on the particularities of the lateral loads as well as on two research topics beyond the current design procedures, namely the hydromechanical coupling and the aging and fatigue phenomena as observed in the course of large-scale field tests. T2 - Internation Masters Course on Soil Mechanics and Geotechnical Engineering CY - Geotechnical Laboratory of CEDEX, Madrid, Spain DA - 27.03.2017 KW - Pile foundations KW - Offshore wind turbines KW - Axial and lateral design KW - Physical phenomenology PY - 2017 AN - OPUS4-39585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo A1 - Luu, L.-H. A1 - Benseghier, Z. A1 - Brunier-Coulin, F. A1 - Philippe, P. A1 - Bonelli, S. A1 - Delenne, J.-Y. T1 - Erosive phenomena at the mesoscale – Perspectives and challenges using coupled LBM-DEM models N2 - The physical phenomena related to the erosion of granular materials by a fluid flow are ubiquitous and often present major challenges and threats to a wide range of civil engineering constructions and infrastructures. Catastrophic earth-dam failures and large sinkholes are just some of the possible outcomes of the different forms of erosion (a.o. surface erosion, suffusion, piping, backwards erosion, etc…). However, little is known about the actual mechanical origins of erosion, while the assessment of erodibility is generally performed by means of experimental tests and empirical correlations. Here we provide a general overview of some current research models aiming to clarify the micromechanical phenomena and their macromechanical consequences taking place in different erosion scenarios. The employed numerical techniques rely on the coupling of two well-stablished particle methods for the fluid and solid phases, namely the Lattice Boltzmann Method (LBM) and the Discrete Element Method (DEM) respectively. Further ingredients of our numerical models include an elastoplastic cohesion model for intergranular solid bridges and a subcritical debonding model for the simulation of transient damage processes within the soil matrix. T2 - 5th Int. Conference on Particle-based Methods (PARTICLES 2017) CY - Hannover, Germany DA - 26.09.2017 KW - Micromechanical modelling KW - Erosion KW - LBM-DEM PY - 2017 AN - OPUS4-42459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -