TY - JOUR A1 - Benseghier, Z. A1 - Luu, L.-H. A1 - Cuéllar, Pablo A1 - Bonelli, S. A1 - Philippe, P. T1 - On the erosion of cohesive granular soils by a submerged jet: a numerical approach JF - Granular Matter N2 - This paper presents an erosion interpretation of cohesive granular materials stressed by an impinging jet based on the results of a micromechanical simulation model. The numerical techniques are briefly described, relying on a two-dimensional Lattice Boltzmann Method coupled with a Discrete Element Methods including a simple model of solid intergranular cohesion. These are then used to perform a parametric study of a planar jet in the laminar regime impinging the surface of granular samples with different degrees of cohesive strength. The results show the pertinence of using a generalized form of the Shields criterion for the quantification of the erosion threshold, which is valid for cohesionless samples, through empirical calibration, and also for cohesive ones. Furthermore, the scouring kinetics are analysed here from the perspective of a selfsimilar expansion of the eroded crater leading to the identification of a characteristic erosion time and the quantification of the classical erosion coefficient. However, the presented results also challenge the postulate of a local erosion law including erodibility parameters as intrinsic material properties. The paper then reviews the main limitations of the simulation and current interpretation models, and discusses the potential causes for the observed discrepancies, questioning the pertinence of using time-averaged macroscopic relations to correctly describe soil erosion. The paper concludes addressing this question with a complementary study of the presented simulations re-assessed at the particle-scale. The resulting local critical shear stress of single grains reveals a very wide dispersion of the data but nevertheless appears to confirm the general macroscopic trend derived for the cohesionless samples, while the introduction of cohesion implies a significant but systematic quantitative deviation between the microscopic and macroscopic estimates. Nevertheless, the micro data still shows consistently that the critical shear stress does actually vary approximately in linear proportion of the adhesive force. KW - Soil erosion KW - Granular cohesion KW - Lattice Boltzmann Method KW - Discrete Element Method KW - Impinging jet PY - 2023 DO - https://doi.org/10.1007/s10035-022-01289-5 VL - 25 IS - 8 SP - 1 EP - 20 PB - Springer AN - OPUS4-56525 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brunier-Coulin, F. A1 - Cuéllar, Pablo A1 - Philippe, P. T1 - Generalized Shields criterion for weakly cohesive granular materials JF - Physical Review Fluids N2 - The erosion of natural sediments by a superficial fluid flow is a generic situation in many usual geological or industrial contexts. However, there is still a lack of fundamental knowledge about erosional processes, especially concerning the role of internal cohesion and adhesive stresses on issues such as the critical flow conditions for the erosion onset or the kinetics of soil mass loss. This contribution investigates the influence of cohesion on the surface erosion by an impinging jet flow based on laboratory tests with artificially bonded granular materials. The model samples are made of spherical glass beads bonded either by solid bridges made of resin or by liquid bridges made of a highly viscous oil. To quantify the intergranular cohesion, the capillary forces of the liquid bridges are here estimated by measuring their main geometrical parameters with image-processing techniques and using well-known analytical expressions. For the solid bonds, the adhesive strength of the materials is estimated by direct measurement of the yield tensile forces and stresses at the particle and sample scales, respectively, with specific traction tests developed for this purpose. The proper erosion tests are then carried out in an optically adapted device that permits a direct visualization of the scouring process at the jet apex by means of the refractive index matching technique. On this basis, the article examines qualitatively the kinetics of the scour crater excavation for both scenarios, namely, for an intergranular cohesion induced by either liquid or solid bonds. From a quantitative perspective, the critical condition for the erosion onset is discussed specifically for the case of the solid bond cohesion. In this respect, we propose here a generalized form of the Shields criterion based on a common definition of a cohesion number from yield tensile values, derived at both micro- and macroscales. The article finally shows that the proposed form manages to reconcile the experimental data for cohesive and cohesionless materials, the latter in the form of the so-called Shields curve along with some previous results of the authors which have been appropriately revisited. KW - Hydraulic jet erosion KW - Cohesive granular materials KW - Jet erosion test PY - 2020 DO - https://doi.org/10.1103/PhysRevFluids.5.034308 VL - 5 IS - 3 SP - 034308 PB - American Physical Society AN - OPUS4-50613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Baeßler, Matthias A1 - Cuéllar, Pablo A1 - Victor, A. A1 - Lüddecke, F. ED - Triantafyllidis, T. T1 - Stability and large deformations of slender structures supported by soil materials T2 - Recent Developments of Soil Mechanics and Geotechnics in Theory and Practice; Lecture Notes in Applied and Computational Mechanics N2 - The stability and geometric nonlinearities of slender structures are a major topic in structural design. While this topic is most relevant in the field of Structural Engineering, e.g. for steel or concrete structures, only few applications take the role of soil-structure-interaction explicitly into account. The focus of this paper is placed on the impact of soil support and its modelling for the buckling analysis based on examples both for pile foundations and for railway track stability. The general interaction between steel design and the geotechnical input will be addressed. The paper discusses and summarizes a range of subtopics based on experience and current research at the author’s institute. KW - Buckling soil-structure-interaction offshore piles track PY - 2020 SN - 978-3-030-28515-9 SN - 978-3-030-28516-6 DO - https://doi.org/10.1007/978-3-030-28516-6 SN - 1613-7736 SN - 1860-0816 VL - 91 SP - 355 EP - 369 PB - Springer CY - Cham, Switzerland AN - OPUS4-49166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Benseghier, Z. A1 - Cuéllar, Pablo A1 - Luu, L.-H. A1 - Delenne, J.-Y. A1 - Bonelli, S. A1 - Philippe, P. T1 - Relevance of Free Jet Model for Soil Erosion by Impinging Jets JF - Journal of Hydraulic Engineering N2 - The surface erosion of soil samples caused by an impinging jet can be analyzed using the jet erosion test (JET), a standard experimental test to characterize the erosion resistance of soils. This paper specifically addresses the flow characteristics of a laminar impinging jet over the irregular surface of granular beds to discuss the pertinence and relevance of commonly used empirical estimations based on a selfsimilar model of a free jet. The JET is here investigated at the microscale with a coupled fluid-particle flow numerical odel featuring the lattice Boltzmann method (LBM) for the fluid phase combined with the discrete element method (DEM) for the mechanical behavior of the solid particles. The hydrodynamics of a laminar plane free jet are confronted with the results from a parametric study of jet impingement, both on solid smooth and fixed granular surfaces, that take into account variations in particle size, distance from jet origin, and jet Reynolds number. The flow characteristics at the bed surface are here quantified, including the maximal values in tangential velocity and wall shear stress, which can be regarded as the major cause of particle detachments under hydrodynamic solicitation. It is shown that the maximal velocity at the impinged surface can be described by the free jet self-similar model, provided that a simple empirical coefficient is introduced. Further, an expression is proposed for the maximal shear stress in laminar conditions, including a Blasius-like friction coefficient that is inversely proportional to the square root of the jet Reynolds number. To conclude, finally, the JET erosion of different cohesionless granular samples is analyzed, confirming that the threshold condition at the onset of granular motion is consistent with the Shields diagram and in close agreement with previous experimental results. KW - Lattice Boltzmann method KW - Soil erosion KW - Discrete element method KW - Laminar flow KW - Jet impingement PY - 2020 DO - https://doi.org/10.1061/(ASCE)HY.1943-7900.0001652 VL - 146 IS - 1 SP - 04019047 PB - ASCE AN - OPUS4-49491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Benseghier, Z. A1 - Cuéllar, Pablo A1 - Luu, L.-H. A1 - Bonelli, S. A1 - Philippe, P. T1 - A parallel GPU-based computational framework for the micromechanical analysis of geotechnical and erosion problems JF - Computers and Geotechnics N2 - This article deals with the relevance and practical feasibility of micromechanical simulations for their application to general geomechanical problems involving fluid-saturated granular assemblies, whether frictional or cohesive. A set of conceptual and numerical tools is here presented, advocating for a parallel computation using graphical processing units (GPUs) to treat large numbers of degrees of freedom with conventional Desktop computers. The fluid phase is here simulated with a particle-resolved approach in the frame of the Lattice Botzmann Method (LBM) while the granular solid phase is modelled as a collection of discrete particles from a Molecular Dynamics DEM perspective. The range of possible material behaviours for the solid granular phase is intended here to cover a broad spectrum from purely frictional to viscous cohesive materials with either brittle or transient debonding features. Specific details of the implementation and some validation cases are put forward. Finally, some exemplary applications in the fields of soil erosion and geotechnical profile installation are provided along with a discussion on the parallel performance of the presented models. The results show that a micromechanical approach can be feasible and useful in practice, providing meaningful insights into complex engineering problems like the erosion kinetics of a soil under an impinging jet or the penetration resistance of a deep foundation in a layered soil profile. KW - Offshore geomechanics KW - Erosion KW - Micromechanical modelling KW - LBM-DEM KW - GPU Parallel computing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502309 DO - https://doi.org/10.1016/j.compgeo.2019.103404 VL - 120 SP - Paper 103404, 1 PB - Elsevier Ltd. AN - OPUS4-50230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kullolli, Borana A1 - Baeßler, Matthias A1 - Cuéllar, Pablo A1 - Rica, S. A1 - Rackwitz, F. T1 - An enhanced interface model for friction fatigue problems of axially loaded piles T2 - OMAE 2019 N2 - The shaft bearing capacity often plays a dominant role for the overall structural behaviour of axially loaded piles in offshore deep foundations. Under cyclic loading, a narrow zone of soil at the pile-soil interface is subject to cyclic shearing solicitations. Thereby, the soil may densify and lead to a decrease of confining stress around the pile due to microphenomena such as particle crushing, migration and rearrangement. This reduction of radial stress has a direct impact on the shaft capacity, potentially leading in extreme cases to pile failure. An adequate interface model is needed in order to model this behaviour numerically. Different authors have proposed models that take typical Interface phenomena in account such as densification, grain breakage, normal pressure effect and roughness. However, as the models become more complex, a great number of material parameters need to be defined and calibrated. This paper proposes the adoption and transformation of an existing soil bulk model (Pastor- Zienkiewicz) into an interface model. To calibrate the new interface model, the results of an experimental campaign with the ring shear device under cyclic loading conditions are here presented. The constitutive model shows a good capability to reproduce typical features of sand behaviour such as cyclic compaction and dilatancy, which in saturated partially-drained conditions may lead to liquefaction and cyclic mobility phenomena. T2 - Conference: OMAE CY - Glasgow, Scotland, UK DA - 09.06.2019 KW - Soil-structure interaction KW - Interface PY - 2019 VL - 2019 SP - Article Number: UNSP V001T10A013 PB - ASME CY - Glasgow, Scotland AN - OPUS4-48444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geißler, Peter A1 - Cuéllar, Pablo A1 - Hüsken, Götz A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias T1 - Insights into compaction grouting for offshore pile foundations T2 - Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering OMAE 2018 N2 - The authors are currently investigating the possibility to apply compaction grouting for offshore pile foundations (Jacket piles as well as monopiles) as a possible retrofitting technique for an optimised foundation concept. In this research project, we are developing a design approach aiming to predict the ideal amount and properties of a grout for a specific soil situation and desired improvement of pile bearing capacity after Installation and during service time. Both numerical and experimental tests have been carried out to investigate the injection process during which a highly viscous grout is injected into the soil under high pressure to displace and compact the surrounding soil without fracturing it. The implicit Material Point Method (MPM) based on a mixed formulation is the numerical technique chosen to deal with the expected large deformations and the arbitrary shape of the developing grout bulb. The usage of MPM prevents both the need of remeshing and the numerical instability induced by extensive mesh distortion. For validation with experimental results, we have constructed a testing chamber with one transparent sidewall. This chamber enables us to observe the injection process directly at the transparent vertical window and to measure the in-plane soil displacements and strains by means of the Digital Image Correlation (DIC) technique. The results already reveal the interrelation of soil and grout properties for a successful usage of this common ground improvement technique. T2 - 37th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2018) CY - Madrid, Spain DA - 18.06.2018 KW - Offshore pile foundation KW - Compaction grouting KW - Material Point Method (MPM) KW - Mixed formulation KW - Digital Image Correlation (DIC) PY - 2018 SN - 978-0-7918-5130-2 SN - 2153-4772 VL - 9 SP - V009T10A013, 1 EP - 9 AN - OPUS4-46004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brunier-Coulin, F. A1 - Cuéllar, Pablo A1 - Philippe, P. T1 - Erosion onset of a cohesionless granular medium by an immersed impinging round jet JF - Physical Review Fluids N2 - Among different devices developed quite recently to quantify the resistance to erosion of natural soil within the broader context of dyke safety, the most commonly used is probably the jet erosion test in which a scouring crater is induced by impingement of an immersed water jet. A comprehensive experimental investigation on the jet erosion in the specific situation of a cohesionless granular material is presented here. The tests were performed by combining special optical techniques allowing for an accurate measurement of the scouring onset and evolution inside an artificially translucent granular sample. The impinging jet hydrodynamics are also analyzed, empirically validating the use of a self-similar theoretical framework for the laminar round jet. The critical conditions at the onset of erosion appear to be best described by a dimensionless Shields number based on the inertial drag force created by the fluid flow on the eroded particles rather than on the pressure gradients around them. To conclude, a tentative empirical model for the maximal flow velocity initiating erosion at the bottom of the scoured crater is put forward and discussed in the light of some preliminary results. KW - Jet erosion KW - Cohesionless granular soil KW - Jet hydrodynamics KW - Erosion onset KW - Experimental optical techniques RIM-PLIF PY - 2017 DO - https://doi.org/10.1103/PhysRevFluids.2.034302 SN - 2469-990X VL - 2 IS - 3 SP - Article 034302, 1 EP - 19 AN - OPUS4-39426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karabeliov, Krassimire A1 - Cuéllar, Pablo A1 - Baeßler, Matthias A1 - Rücker, Werner T1 - System identification of inverse, multimodal and nonlinear problems using evolutionary computing - Application to a pile structure supported on nonlinear springs JF - Engineering Structures N2 - This paper deals with the system identification of a mechanical structure supported by nonlinear springs subjected to an external load. If all mechanical parameters of the system were known, the displacement of the system subjected to this load could be easily calculated. However, the monitoring applications often deal with the inverse problem. The loads and displacements of the system are known and certain mechanical Parameters of the system are sought. The solution of such inverse problems can be difficult, especially when they have a nonlinear and multimodal character, which often makes them appear intractable at first sight. However, evolutionary computing can be applied to solve this inverse, nonlinear and multimodal problem. Sometimes a prior knowledge exists on certain system properties, which is difficult to implement into analytical or numerical solvers. This knowledge can play a decisive role in identifying the System properties and it can be easily included as a boundary condition when applying evolutionary algorithms. This article discusses how and under what conditions the unknown spring resistances can be identified. The practical application of this procedure is exemplified here with the mechanical system of a pile foundation. KW - Evolutionary computing KW - Inverse problem KW - Multimodal solution KW - System identification KW - Pile monitoring PY - 2015 DO - https://doi.org/10.1016/j.engstruct.2015.07.034 SN - 0141-0296 SN - 1873-7323 VL - 101 SP - 609 EP - 620 AN - OPUS4-39310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karabeliov, Krassimire A1 - Baeßler, Matthias A1 - Cuéllar, Pablo A1 - Rücker, Werner T1 - A method for system identification of a structure supported by nonlinear springs using evolutionary computing JF - Journal of physics / Conference series N2 - A mechanical structure supported by nonlinear springs subjected to an external load is considered. If all mechanical parameters of the system were known, the displacement of the system subjected to this load could be easily calculated. If not all of the parameters are known, but the load and the displacement are measured at one location, an inverse problem exists. In the presented problem the nonlinear springs are unknown and have to be determined. At first glance a problem needs to be solved, which is underdetermined due to the number of unknown variables. However, evolutionary computing can be applied to solve this inverse, nonlinear and multimodal problem. Sometimes a prior knowledge exists on certain system properties, which is difficult to implement into analytical or numerical solver. This knowledge can play a decisive role in identifying the system properties and it can be easily included as boundary condition when applying evolutionary algorithm. This article examines how and under what conditions the spring resistances can be identified. The procedure is exemplified at a mechanical system of a pile foundation. T2 - 2nd International conference on mathematical modeling in physical sciences 2013 CY - Prague, Czech Republic DA - 01.09.2013 PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-304531 UR - http://iopscience.iop.org/1742-6596/490/1/012095/pdf/1742-6596_490_1_012095.pdf DO - https://doi.org/10.1088/1742-6596/490/1/012095 SN - 1742-6588 SN - 1742-6596 VL - 490 IS - 012095 SP - 1 EP - 4 PB - IOP Publ. CY - Bristol, UK AN - OPUS4-30453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -