TY - JOUR A1 - Farhat, Abbas A1 - Luu, Li-Hua A1 - Doghmane, Alexis A1 - Cuéllar, Pablo A1 - Benahmed, Nadia A1 - Wichtmann, Torsten A1 - Philippe, Pierre T1 - Micro and macro mechanical characterization of artificial cemented granular materials N2 - The focus of this study is the experimental characterization of cemented granular materials, with the aim of identifying the microscopic properties of the solid bonds and describing the extension to macroscopic mechanical strength of cemented samples.We chose to use artificially bonded granular materials, made of glass beads connected by solid paraffin bridges. The results of several sets of laboratory tests at different scales are presented and discussed. Micromechanical tests investigate the yield strength of single solid bonds between particles under traction, shearing, bending and torsion loading, as a function of variations in particle size, surface texture and binder content. Macro-scale tensile tests on cemented samples explore then the scale transition, including influence of confining walls through homothetic variations of the sample size. Despite the large statistical dispersion of the results, it was possible to derive and validate experimentally an analytical expression for micro tensile yield force as a function of the binder content, coordination number and grain diameter. In view of the data, an adhesive bond strength at the contact between bead and solid bond is deduced with very good accuracy and it is even reasonable to assume that the other threshold values (shear force, bending and torsion moments) are simply proportional to the tensile yield, thus providing a comprehensive 3D model of cemented bond. However, the considerable dispersion of the data at the sample scale prevents validation of the extended model for macroscopic yield stress. A final discussion examines the various factors that may explain intrinsic variability. By comparison with other more realistic systems studied in the literature in the context of bio-cementation, our artificial material nevertheless appears suitable for representing a cemented granular material. Being easy to implement, it could thus enable the calibration of discrete cohesion models for simulation of practical applications. KW - Cemented granular material KW - Micro-mechanical characterisation KW - Artificial soils KW - Yield tensile stress PY - 2024 DO - https://doi.org/10.1007/s10035-024-01426-2 SN - 1434-5021 VL - 26 IS - 3 SP - 1 EP - 20 PB - Springer CY - Berlin AN - OPUS4-63507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kemmler, Samuel A1 - Rettinger, Christoph A1 - Rüde, Ulrich A1 - Cuéllar, Pablo A1 - Köstler, Harald T1 - Efficiency and scalability of fully-resolved fluid-particle simulations on heterogeneous CPU-GPU architectures N2 - Current supercomputers often have a heterogeneous architecture using both conventional Central Processing Units (CPUs) and Graphics Processing Units (GPUs). At the same time, numerical simulation tasks frequently involve multiphysics scenarios whose components run on different hardware due to multiple reasons, e.g., architectural requirements, pragmatism, etc. This leads naturally to a software design where different simulation modules are mapped to different subsystems of the heterogeneous architecture. We present a detailed performance analysis for such a hybrid four-way coupled simulation of a fully resolved particle-laden flow. The Eulerian representation of the flow utilizes GPUs, while the Lagrangian model for the particles runs on conventional CPUs. Two characteristic model situations involving dense and dilute particle systems are used as benchmark scenarios. First, a roofline model is employed to predict the node level performance and to show that the lattice-Boltzmann-based Eulerian fluid simulation reaches very good performance on a single GPU. Furthermore, the GPU-GPU communication for a large-scale Eulerian flow simulation results in only moderate slowdowns. This is due to the efficiency of the CUDA-aware MPI communication, combined with the use of communication hiding techniques. On 1024 A100 GPUs, an overall parallel efficiency of up to 71% is achieved. While the flow simulation has good performance characteristics, the integration of the stiff Lagrangian particle system requires frequent CPU-CPU communications that can become a bottleneck, especially when simulating the dense particle system. Additionally, special attention is paid to the CPU-GPU communication overhead since this is essential for coupling the particles to the flow simulation. However, thanks to our problem-aware co-partitioning, the CPU-GPU communication overhead is found to be negligible. As a lesson learned from this development, four criteria are postulated that a hybrid implementation must meet for the efficient use of heterogeneous supercomputers. KW - Discrete element method KW - Hybrid implementation KW - High-performance computing KW - Particulate flow KW - Lattice Boltzmann method PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-623958 DO - https://doi.org/10.1177/10943420241313385 SN - 1741-2846 SP - 1 EP - 19 PB - SAGE Publications AN - OPUS4-62395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zinas, Orestis A1 - Papaioannou, Iason A1 - Schneider, Ronald A1 - Cuéllar, Pablo T1 - Multivariate Gaussian Process Regression for 3D site characterization from CPT and categorical borehole data N2 - Accurate prediction of subsurface stratigraphy and geotechnical properties, along with quantification of associated uncertainties, is essential for improving the design and assessment of geotechnical structures. Several studies have utilized indirect data from Cone Penetration Tests (CPTs) and employed statistical and Machine Learning methods to quantify the geological and geotechnical uncertainty. Incorporating direct borehole data can reduce uncertainties. This study proposes a computationally efficient multivariate Gaussian Process model that utilizes site-specific data and: (i) jointly models multiple categorical (USCS labels) and continuous CPT variables, (ii) learns a non-separable covariance structure leveraging the Linear Model of Coregionalization, and (iii) predicts a USCS based stratigraphy and CPT parameters at any location within the 3D domain. The results demonstrate that integrating geotechnical and geological data into a unified model yields more reliable predictions of subsurface stratification, enabling the parallel interpretation of both USCS classification and CPT profiles. Importantly, the model demonstrates its potential to integrate multiple variables from different sources and data types, contributing to the advancement of methodologies for the joint modeling of geotechnical, geological, and geophysical data. KW - Geotechnical site-characterization KW - Cone Penetration Tests KW - Stratigraphy prediction KW - Multivariate Gaussian process KW - Variational inference KW - Linear Model of Coregionalization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-629456 DO - https://doi.org/10.1016/j.enggeo.2025.108052 SN - 1872-6917 VL - 352 SP - 1 EP - 19 PB - Elsevier B.V. AN - OPUS4-62945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Benseghier, Z. A1 - Cuéllar, Pablo A1 - Luu, L.-H. A1 - Bonelli, S. A1 - Philippe, P. T1 - A parallel GPU-based computational framework for the micromechanical analysis of geotechnical and erosion problems N2 - This article deals with the relevance and practical feasibility of micromechanical simulations for their application to general geomechanical problems involving fluid-saturated granular assemblies, whether frictional or cohesive. A set of conceptual and numerical tools is here presented, advocating for a parallel computation using graphical processing units (GPUs) to treat large numbers of degrees of freedom with conventional Desktop computers. The fluid phase is here simulated with a particle-resolved approach in the frame of the Lattice Botzmann Method (LBM) while the granular solid phase is modelled as a collection of discrete particles from a Molecular Dynamics DEM perspective. The range of possible material behaviours for the solid granular phase is intended here to cover a broad spectrum from purely frictional to viscous cohesive materials with either brittle or transient debonding features. Specific details of the implementation and some validation cases are put forward. Finally, some exemplary applications in the fields of soil erosion and geotechnical profile installation are provided along with a discussion on the parallel performance of the presented models. The results show that a micromechanical approach can be feasible and useful in practice, providing meaningful insights into complex engineering problems like the erosion kinetics of a soil under an impinging jet or the penetration resistance of a deep foundation in a layered soil profile. KW - Offshore geomechanics KW - Erosion KW - Micromechanical modelling KW - LBM-DEM KW - GPU Parallel computing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502309 DO - https://doi.org/10.1016/j.compgeo.2019.103404 VL - 120 SP - Paper 103404, 1 PB - Elsevier Ltd. AN - OPUS4-50230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balscheit, Hagen A1 - Geißler, Peter A1 - Cuéllar, Pablo A1 - Basedau, Frank A1 - Baeßler, Matthias T1 - Large-scale field tests on plastic pile tip failure upon monopile installation N2 - Large-diameter monopiles are the most common foundation structures for offshore wind turbines. One relevant failure mode during installation is plastic failure of the pile tip which may increase progressively during further driving (pile tip buckling; extrusion buckling). This paper presents the details and results of a large-scale field-test campaign with dynamic pile installation for the validation and calibration of different numerical approaches concerning pile-tip buckling phenomena. The phenomenology of observed pile-tip failures is here described in detail and a first quantitative approach is evaluated based on the field-test data. As the number of new projects continues to grow and the necessity to construct wind farms in challenging terrain increases, such field data-sets will become increasingly relevant. KW - Monopile KW - Offshore Windenergy KW - Pfahlfußbeulen KW - Pile Tip Buckling KW - Reference Tests PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-611651 DO - https://doi.org/10.1016/j.oceaneng.2024.119322 VL - 313 SP - 1 EP - 14 PB - Elsevier B.V. AN - OPUS4-61165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Balscheit, Hagen A1 - Victor, A. A1 - Thiele, Marc A1 - Cuéllar, Pablo A1 - Baeßler, Matthias A1 - Lüddecke, F. T1 - Experimental Investigation on Buckling Behavior of soil-embedded Piles N2 - Monopiles are currently the predominant foundation type for offshore wind turbines in Europe. Due to the increasing dimensions of the turbines, pile diameters beyond 10m become necessary. A design-relevant failure mode of monopiles is the local buckling of the pile wall in the embedded sections. Relevant buckling guidelines do not consider the soil-structure interaction specifically, although the embedment may allow for a reduction of wall thickness. However, Eurocode-based design concepts require a validation with comparative buckling cases for validation, either in terms of buckling curve parameters for both the algebraic stress-based and semi-numerical LBA/MNA design concept or as a calibration factor kGMNIA for fully numerical GMNIA calculations. These parameters are not yet available for embedded shells. To close this gap, we have conducted experiments on piles embedded in sand to investigate local buckling under soil-structure-interaction. The results will be used to calibrate numerical models. This research was carried out as part of the VERBATIM research project, funded by PTJ/BMWK and supported by the Carbon Trust's Offshore Wind Accelerator consortium. T2 - EUROSTEEL 2023 CY - Amsterdam, The Netherlands DA - 11.09.2023 KW - Wind KW - Wind Energy KW - Shell Buckling KW - Offshore KW - Soil-Structure-Interaction PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583641 DO - https://doi.org/10.1002/cepa.2313 SN - 2509-7075 VL - 6 IS - 3-4 SP - 1729 EP - 1734 PB - Ernst & Sohn Gmb AN - OPUS4-58364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis A1 - Papaioannou, Iason A1 - Schneider, Ronald A1 - Cuéllar, Pablo A1 - Baeßler, Matthias T1 - 3D spatial modelling of CPT data for probabilistic preliminary assessment of potential pile tip damage upon collision with boulders N2 - Tip damage of monopiles from boulder collisions during installation has emerged as a critical design issue, primarily due to the combination of the widespread use of large-diameter piles and the complexity of the ground conditions at the available sites. Recently, a framework relating potential pile tip damage to cone tip resistance from Cone Penetration Tests (CPTs) has been proposed in the literature. Gaussian processes are powerful stochastic models that enable probabilistic spatial interpolation of soil data at any location within a site. On this basis, this study utilizes sparse CPT data from a site in the North Sea, to first develop an efficient Gaussian process regression model, which is used to derive a three-dimensional (3D) probabilistic predictive map of the cone tip resistance. Assuming deterministic loading conditions and a factual collision with a boulder of pre-defined properties, the cone tip resistance predictive model is subsequently used for a probabilistic preliminary assessment of potential pile tip damage. Results of the analysis are realistic 3D probability maps of potential damage that aim to support engineering judgment and contribute towards cost-effective site investigation planning and offshore wind farm design. T2 - 5th International Symposium on Frontiers in Offshore Geotechnics (ISFOG 2025) CY - Nantes, France DA - 09.06.2025 KW - CPT data KW - Gaussian process regression KW - Boulder impact KW - Preliminary pile tip damage assessment PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634417 SN - 978-2-85782-758-0 DO - https://doi.org/10.53243/ISFOG2025-323 SP - 505 EP - 510 PB - International Society for Soil Mechanics and Geotechnical Engineering CY - London AN - OPUS4-63441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Balscheit, Hagen A1 - Geißler, Peter A1 - Schepers, Winfried A1 - Cuèllar, Pablo T1 - Evaluation of pile tip buckling based on large scale tests N2 - Der Beitrag beschreibt eine groß angelegte Versuchskampagne mit Pfahlrammungen, um das Risiko des plastischen Versagens der Pfahlspitze besser zu verstehen und numerische Modelle zu validieren. Ein numerisches Modell mit transientem Bodenkontakt zeigt eine gute Übereinstimmung mit den Testergebnissen. Parametervariationen verdeutlichen, wie empfindlich die Pfahlreaktion auf Imperfektionen und Randbedingungen ist. T2 - 5TH INTERNATIONAL SYMPOSIUM ON FRONTIERS IN OFFSHORE GEOTECHNICS CY - Nantes, France DA - 09.06.2025 KW - Pile Tip Buckling KW - Monopile KW - Offshore Windenergy KW - Driving Refusal KW - Large Scale Test PY - 2025 SN - 978-2-85782-758-0 DO - https://doi.org/10.53243/ISFOG2025-476 SP - 1218 EP - 1223 PB - International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE) CY - Nantes AN - OPUS4-63387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karabeliov, Krassimire A1 - Cuéllar, Pablo A1 - Baeßler, Matthias A1 - Rücker, Werner T1 - System identification of inverse, multimodal and nonlinear problems using evolutionary computing - Application to a pile structure supported on nonlinear springs N2 - This paper deals with the system identification of a mechanical structure supported by nonlinear springs subjected to an external load. If all mechanical parameters of the system were known, the displacement of the system subjected to this load could be easily calculated. However, the monitoring applications often deal with the inverse problem. The loads and displacements of the system are known and certain mechanical Parameters of the system are sought. The solution of such inverse problems can be difficult, especially when they have a nonlinear and multimodal character, which often makes them appear intractable at first sight. However, evolutionary computing can be applied to solve this inverse, nonlinear and multimodal problem. Sometimes a prior knowledge exists on certain system properties, which is difficult to implement into analytical or numerical solvers. This knowledge can play a decisive role in identifying the System properties and it can be easily included as a boundary condition when applying evolutionary algorithms. This article discusses how and under what conditions the unknown spring resistances can be identified. The practical application of this procedure is exemplified here with the mechanical system of a pile foundation. KW - Evolutionary computing KW - Inverse problem KW - Multimodal solution KW - System identification KW - Pile monitoring PY - 2015 DO - https://doi.org/10.1016/j.engstruct.2015.07.034 SN - 0141-0296 SN - 1873-7323 VL - 101 SP - 609 EP - 620 AN - OPUS4-39310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kullolli, Borana A1 - Stutz, H. H. A1 - Cuéllar, Pablo A1 - Baeßler, Matthias A1 - Rackwitz, F. ED - Cardoso, A. S. ED - Borges, J. L. ED - Costa, P. A. ED - Gomes, A. T. ED - Marques, J. C. ED - Vieira, C. S. T1 - A generalized plasticity model adapted for shearing interface problems N2 - The response of many geotechnical systems, whose structural behavior depends on shearing effect, is closely related to soil structure interaction phenomenon. Experimentally it is found that the localisation of these effect happens at a narrow soil layer next to the structure. Numerically, this behavior can be modelled through inter-face elements and adequate constitutive models. In this work, a constitutive model in the framework of Gen-eralized Plasticity for sandy soils has been chosen to be adapted for the interface zone. From the direct shear experiments a sandy soil at loose and dense states under different normal pressures is considered. The adapted constitutive model is able to reproduce contraction and dilatation of the soil according to its relative density and it shows a good agreement with the experimental data. T2 - Conference CY - Porto, Portugal DA - 25.06.2018 KW - Numerical modelling KW - Soil-pile interaction KW - Interface KW - Shearing PY - 2018 SN - 978-1-138-33198-3 VL - 1 SP - 97 EP - 102 PB - NUMGE CY - Porto, Portugal AN - OPUS4-45721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -