TY - CONF A1 - Schneider, Ronald A1 - Cuéllar, Pablo A1 - Baeßler, Matthias T1 - Probabilistic approaches to the design and assessment of offshore foundations considering spatially varying site conditions N2 - In this contribution, we consider two applications in which probabilistic approaches can potentially complement or enhance the design and assessment of offshore wind turbine foundations. First, we illustrate in a numerical example that probabilistic modelling can be helpful in dealing with chang-es in turbine locations during the planning phase of an offshore wind farm. In this case, spatial probabilistic modelling of the ground conditions enables (a) an inference of the soil properties at the modified turbine location from field data collected at different locations across an offshore wind farm site and (b) an optimisation of further site investigations. Second, we discuss the uncer-tainties and risks associated with the installation of large diameter monopiles in soils with hetero-geneities such as strong layers and/or embedded boulders. Subsequently, we present a concept for modelling, understanding, and managing these risks based on a probabilistic model of the subgrade conditions, monopile, and subgrade-pile-interaction. T2 - 3rd International Conference on Structural Integrity for Offshore Energy Industry (SI 2021) CY - Online meeting DA - 15.11.2021 KW - Probabilistic modelling KW - Spatially varying ground conditions KW - Foundation reliability analysis KW - Monopile installation risks PY - 2022 SN - 978-1-8383226-3-2 SP - 9 EP - 17 AN - OPUS4-54531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kullolli, Borana A1 - Cuéllar, Pablo A1 - Baeßler, Matthias A1 - Stutz, H. H. T1 - Modelling and calibration for cyclic soil-structure interface behaviour N2 - The structural performance of many geotechnical systems (e.g. axially-loaded pile foundations), depends on the shearing resistance at the soil interface, which may govern the load bearing capacity of the foundation. Experimental investigations have shown that this interaction is mainly localised within a narrow shear band next to the structure. Under cyclic loading, a contraction of the soil at the interface may arise (net volume loss), possibly leading to a stress relaxation and thus to a reduction of the load bearing capacity (the so-called friction fatigue). Based on the constitutive similarities between soil continua and interfaces, we propose here the adaption of a Generalized Plasticity model for sandy soils for the numerical analysis of interface problems. In this contribution, the results of an experimental campaign for the parameter calibration of the constitutive model are presented. The tests have been conducted with a ring shear device involving different normal stresses, roughness of the steel plates as well as cyclic loading. The new modelling approach shows promising results and has the additional practical advantage that the interface zone and the soil continuum can both be described with the same constitutive model in general boundary value problems. T2 - Konferenz 7th International Symposium on Deformation Characteristics of Geomaterials CY - Glasgow, Scotland DA - 26.06.2019 KW - Soil-structure interaction KW - Offshore foundations PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-489096 VL - 92 SP - 13007 EP - 13013 PB - EDP Sciences CY - Glasgow, Scotland AN - OPUS4-48909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kullolli, Borana A1 - Baeßler, Matthias A1 - Cuéllar, Pablo A1 - Rica, S. A1 - Rackwitz, F. T1 - An enhanced interface model for friction fatigue problems of axially loaded piles N2 - The shaft bearing capacity often plays a dominant role for the overall structural behaviour of axially loaded piles in offshore deep foundations. Under cyclic loading, a narrow zone of soil at the pile-soil interface is subject to cyclic shearing solicitations. Thereby, the soil may densify and lead to a decrease of confining stress around the pile due to microphenomena such as particle crushing, migration and rearrangement. This reduction of radial stress has a direct impact on the shaft capacity, potentially leading in extreme cases to pile failure. An adequate interface model is needed in order to model this behaviour numerically. Different authors have proposed models that take typical Interface phenomena in account such as densification, grain breakage, normal pressure effect and roughness. However, as the models become more complex, a great number of material parameters need to be defined and calibrated. This paper proposes the adoption and transformation of an existing soil bulk model (Pastor- Zienkiewicz) into an interface model. To calibrate the new interface model, the results of an experimental campaign with the ring shear device under cyclic loading conditions are here presented. The constitutive model shows a good capability to reproduce typical features of sand behaviour such as cyclic compaction and dilatancy, which in saturated partially-drained conditions may lead to liquefaction and cyclic mobility phenomena. T2 - Conference: OMAE CY - Glasgow, Scotland, UK DA - 09.06.2019 KW - Soil-structure interaction KW - Interface PY - 2019 VL - 2019 SP - Article Number: UNSP V001T10A013 PB - ASME CY - Glasgow, Scotland AN - OPUS4-48444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geißler, Peter A1 - Schwarz, Johannes A1 - Cuéllar, Pablo A1 - Hüsken, Götz A1 - Baeßler, Matthias A1 - Kühne, Hans-Carsten A1 - Morrone, C. T1 - Compaction grouting to improve the pile bearing capacity in non-cohesive soil N2 - The aim of an ongoing research project is to develop a design approach for typical offshore driven piles (e.g. Jacket piles) based on the application of injections by compaction grouting directly at the pile shaft. The paper aims to present the results of laboratory and in-situ tests, which reveal the efficiency and the promising potential of the optimised foundation concept for a more economic dimensioning of pile foundations and to increase their bearing capacity in non-cohesive soil at any moment after installation. T2 - Twenty-ninth International Ocean and Polar Engineering Conference CY - Honolulu, HI, USA DA - 16.06.2019 KW - Offshore Pile Foundation KW - Compaction Grouting KW - Grout KW - Injection Sequence KW - Tensile Capacity PY - 2019 SN - 978-1-880653-85-2 SN - 1098-6189 VL - II SP - 2178 EP - 2184 PB - International Society of Offshore and Polar Engineers (ISOPE) CY - Cupertino, California, USA AN - OPUS4-48505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geißler, Peter A1 - Cuéllar, Pablo A1 - Hüsken, Götz A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias T1 - Insights into compaction grouting for offshore pile foundations N2 - The authors are currently investigating the possibility to apply compaction grouting for offshore pile foundations (Jacket piles as well as monopiles) as a possible retrofitting technique for an optimised foundation concept. In this research project, we are developing a design approach aiming to predict the ideal amount and properties of a grout for a specific soil situation and desired improvement of pile bearing capacity after Installation and during service time. Both numerical and experimental tests have been carried out to investigate the injection process during which a highly viscous grout is injected into the soil under high pressure to displace and compact the surrounding soil without fracturing it. The implicit Material Point Method (MPM) based on a mixed formulation is the numerical technique chosen to deal with the expected large deformations and the arbitrary shape of the developing grout bulb. The usage of MPM prevents both the need of remeshing and the numerical instability induced by extensive mesh distortion. For validation with experimental results, we have constructed a testing chamber with one transparent sidewall. This chamber enables us to observe the injection process directly at the transparent vertical window and to measure the in-plane soil displacements and strains by means of the Digital Image Correlation (DIC) technique. The results already reveal the interrelation of soil and grout properties for a successful usage of this common ground improvement technique. T2 - 37th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2018) CY - Madrid, Spain DA - 18.06.2018 KW - Offshore pile foundation KW - Compaction grouting KW - Material Point Method (MPM) KW - Mixed formulation KW - Digital Image Correlation (DIC) PY - 2018 SN - 978-0-7918-5130-2 SN - 2153-4772 VL - 9 SP - V009T10A013, 1 EP - 9 AN - OPUS4-46004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo A1 - Geißler, Peter A1 - Baeßler, Matthias T1 - Geotechnical challenges in the field of Offshore Wind Energy. Micromechanical perspectives beyond the FEM N2 - This talk provides a brief overview on some geomechanical phenomena and problematic issues in the field of offshore wind-energy geotechnics, with reference to their associated challenges for a numerical analysis/simulation. These may include large deformations, fluid coupling and grain-scale phenomena, all of which are generally difficult to be addressed with conventional FE techniques. These challenges are illustrated here with a practical example for the retrofit of axially loaded piles using compaction grouting techniques. In this case, the mechanical effects of the retrofit may be analysed with standard FE techniques, but require the adoption of strong assumptions, while the injection process itself can only be analysed with special techniques such as the MPM. Finally, an LBM-DEM framework for the micromechanical analysis of such problems is introduced and a practical application for the estimation of the soil resistance to driving (SRD) in layered profiles is discussed. T2 - Online Symposium on Meshfree models for Engineers: Where are they really worthwhile? CY - Online meeting DA - 01.12.2022 KW - Offshore wind energy KW - Offshore geotechnics KW - Micromechanical simulation KW - LBM-DEM KW - Pile retrofit system PY - 2022 AN - OPUS4-56450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo T1 - Deep foundations for offshore wind turbines - 1st part: axial behavior T1 - Cimentaciones profundas para aerogeneradores marinos. 1a parte: Comportamiento axial N2 - This presentation deals with the phenomenology and design of pile foundations for offshore wind turbines, and is divided into two lectures. The first lecture presents a brief introduction to the context and peculiarities of such foundations, and then focuses on the particular case of axially loaded piles. This part is most relevant for the relatively slender piles of the multi-pile substructures (i.e. jackets and tripods). A clear distinction between physical phenomenology and practical design is drawn here. T2 - Masters course on Soil Mechanics and Geotechnical Engineering. Geotechnical Laboratory of CEDEX CY - Online meeting DA - 17.03.2023 KW - Pile foundations KW - Offshore wind turbines KW - Physical phenomenology KW - Design methods KW - Numerical modelling KW - Physical testing PY - 2023 AN - OPUS4-57176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo A1 - Baeßler, Matthias T1 - Design challenges for offshore wind-farms. From foundation mechanics to wind-farm aerodynamics N2 - This talk provides a brief introduction on general engineering aspects of offshore wind energy production. Then some geomechanical issues for the foundation of OWTs into the seabed are introduced, while the results from experimental investigations and coupled computational analysis are discussed. In the second part of the seminar, the hydromechanical Wave–Tower interaction is firstly discussed. Then, some general aspects of the windfarm aerodynamics are introduced. On the one hand, some modelling possibilities for the wake analysis of single turbines and turbine groups are discussed. And on the other hand the relevance of such analyses for a proper windfarm layout optimization is pointed out. Concerning the geomechanical issues the talk shows that: i) The pile’s bearing capacity can degrade under cyclic loading (waves, wind, …). ii) The time effects can be relevant: Capacity improvement can be substantial, but also fragile. iii) There are cyclic PWP effects: Cyclic interaction with pore water may lead to soil softening and an uncoupled analysis (current design practice) is potentially unsafe. And concerning the hydromechanical and aerodynamical design considerations, this seminar shows that: i) Numerical analysis of turbine’s interaction with wind/waves is useful and affordable. ii) Simplified models can provide insight into windfarm aerodynamics. iii) Turbulent wake analysis is very relevant for the windfarm layout. T2 - Energy Science Kolloquium CY - Fakultät für Physik, Universität Duisburg-Essen, Germany DA - 25.01.2018 KW - Offshore wind farms KW - Geomechanics KW - Design PY - 2018 AN - OPUS4-43958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo T1 - Deep foundations for offshore wind turbines T1 - Cimentaciones profundas para aerogeneradores marinos N2 - This presentation deals with the phenomenology and design of pile foundations for offshore wind turbines, and is divided in two lectures. The first lecture presents a brief introduction to the context and peculiarities of such foundations, and then focuses on the particular case of axially loaded piles. This part is most relevant for the relatively slender piles of the multi-pile substructures (i.e. jackets and tripods). A clear distinction between physical phenomenology and practical design is drawn here. The second lecture continues with the case of lateraly loaded offshore piles, which bears most relevance for the case of the monopile foundations. Here again, a clear separation between physical reality and design methods is intended. Finally, the last part of the second lecture introduces several advanced topics which lie outside the classical design approaches, namely the cyclic pile fatigue and the so-called pile setup (i.e. the time effects on the axial pile capacity). The relevance of these two topics is illustrated with experimental results from a field testing campaign on real large-scale piles. T2 - Masters course on Soil Mechanics and Geotechnical Engineering 2018, Geotechnical Laboratory of CEDEX CY - Madrid, Spain DA - 13.04.2018 KW - Pile foundations KW - Offshore wind energy KW - Physical phenomenology KW - Design practice PY - 2018 AN - OPUS4-44764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo T1 - Deep foundations for offshore wind turbines. Lecture 1: Axial behaviour T1 - Cimentaciones profundas para aerogeneradores marinos - Parte 1: Comportamiento axial N2 - This presentation deals with the phenomenology and design of pile foundations for offshore wind turbines, and is divided into two lectures. The first lecture presents a brief introduction to the context and peculiarities of such foundations, and then focuses on the particular case of axially loaded piles. This part is most relevant for the relatively slender piles of the multi-pile substructures (i.e. jackets and tripods). A clear distinction between physical phenomenology and practical design is drawn here. T2 - Masters course on Soil Mechanics and Geotechnical Engineering. Geotechnical Laboratory of CEDEX CY - Online meeting DA - 21.04.2020 KW - Pile foundations KW - Offshore wind turbines KW - Physical phenomenology KW - Design methods PY - 2020 AN - OPUS4-51057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -