TY - JOUR A1 - Conrad, R. A1 - Klose, M. A1 - Noll, Matthias T1 - Functional and structural response of the methanogenic microbial community in rice field soil to temperature change JF - Environmental microbiology N2 - The microbial community in anoxic rice field soil produces CH4 over a wide temperature range up to 55°C. However, at temperatures higher than about 40°C, the methanogenic path changes from CH4 production by hydrogenotrophic plus acetoclastic methanogenesis to exclusively hydrogenotrophic methanogenesis and simultaneously, the methanogenic community consisting of Methanosarcinaceae, Methanoseataceae, Methanomicrobiales, Methanobacteriales and Rice Cluster I (RC-1) changes to almost complete dominance of RC-1. We studied changes in structure and function of the methanogenic community with temperature to see whether microbial members of the community were lost or their function impaired by exposure to high temperature. We characterized the function of the community by the path of CH4 production measuring δ13C in CH4 and CO2 and calculating the apparent fractionation factor (αapp) and the structure of the community by analysis of the terminal restriction fragment length polymorphism (T-RFLP) of the microbial 16S rRNA genes. Shift of the temperature from 45°C to 35°C resulted in a corresponding shift of function and structure, especially when some 35°C soil was added to the 45°C soil. The bacterial community (T-RFLP patterns), which was much more diverse than the archaeal community, changed in a similar manner upon temperature shift. Incubation of a mixture of 35°C and 50°C pre-incubated methanogenic rice field soil at different temperatures resulted in functionally and structurally well-defined communities. Although function changed from a mixture of acetoclastic and hydrogenotrophic methanogenesis to exclusively hydrogenotrophic methanogenesis over a rather narrow temperature range of 42-46°C, each of these temperatures also resulted in only one characteristic function and structure. Our study showed that temperature conditions defined structure and function of the methanogenic microbial community. KW - Structure and function KW - Methanogenic archaeal community KW - Temperature shift PY - 2009 DO - https://doi.org/10.1111/j.1462-2920.2009.01909.x SN - 1462-2912 SN - 1462-2920 VL - 11 IS - 7 SP - 1844 EP - 1853 PB - Blackwell Science CY - Oxford AN - OPUS4-19596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -