TY - JOUR A1 - Mauclair, C. A1 - Mermillod-Blondin, A. A1 - Mishchik, K. A1 - Bonse, Jörn A1 - Rosenfeld, A. A1 - Colombier, J. P. A1 - Stoian, R. T1 - Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses N2 - We discuss the dynamics of ultrashort pulsed laser excitation in bulk optical silica-based glasses (fused silica and borosilicate BK7) well-above the permanent modification threshold. We indicate subsequent structural and thermomechanical energy relaxation paths that translate into positive and negative refractive index changes, compression and rarefaction zones. If fast electronic decay occurs at low excitation levels in fused silica via self-trapping of excitons, for carrier densities in the vicinity of the critical value at the incident wavelength, persistent long-living absorptive states indicate the achievement of low viscosity matter states manifesting pressure relaxation, rarefaction, void opening and compaction in the neighboring domains. An intermediate ps-long excited carrier dynamics is observed for BK7 in the range corresponding to structural expansion and rarefaction. The amount of excitation and the strength of the subsequent hydrodynamic evolution is critically dependent on the pulse time envelope, indicative of potential optimization schemes. KW - Ultrafast laser excitation KW - Refractive index engineering KW - Glasses KW - Carrier plasmas KW - Pulse shaping PY - 2016 U6 - https://doi.org/10.1017/hpl.2016.45 SN - 2095-4719 SN - 2052-3289 VL - 4 SP - e46, 1 EP - 8 PB - Cambridge University Press AN - OPUS4-38689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rudenko, A. A1 - Colombier, J.-P. A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Itina, T.E. T1 - Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin N2 - Periodic self-organization of matter beyond the diffraction limit is a puzzling phenomenon, typical both for surface and bulk ultrashort laser processing. Here we compare the mechanisms of periodic nanostructure formation on the surface and in the bulk of fused silica. We show that volume nanogratings and surface nanoripples having subwavelength periodicity and oriented perpendicular to the laser polarization share the same electromagnetic origin. The nanostructure orientation is defined by the near-field local enhancement in the vicinity of the inhomogeneous scattering centers. The periodicity is attributed to the coherent superposition of the waves scattered at inhomogeneities. Numerical calculations also support the multipulse accumulation nature of nanogratings formation on the surface and inside fused silica. Laser surface processing by multiple laser pulses promotes the transition from the high spatial frequency perpendicularly oriented nanoripples to the low spatial frequency ripples, parallel or perpendicular to the laser polarization. The latter structures also share the electromagnetic origin, but are related to the incident field interference with the scattered far-field of rough non-metallic or transiently metallic surfaces. The characteristic ripple appearances are predicted by combined electromagnetic and thermo-mechanical approaches and supported by SEM images of the final surface morphology and by time-resolved pump-probe diffraction measurements. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Nanostructures KW - Dielectrics KW - Electromagnetic scattering PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-421747 UR - https://www.nature.com/articles/s41598-017-12502-4 SN - 2045-2322 VL - 7 SP - Article 12306, 1 EP - 14 PB - Springer Nature AN - OPUS4-42174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -