TY - JOUR A1 - Tobias, Charlie A1 - Climent Terol, Estela A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Polystyrene Microparticles with Convergently Grown Mesoporous Silica Shells as a Promising Tool for Multiplexed Bioanalytical Assays N2 - Functional core/shell particles are highly sought after in analytical chemistry, especially in methods suitable for single-particle analysis such as flow cytometry because they allow for facile multiplexed detection of several analytes in a single run. Aiming to develop a powerful bead platform of which the core particle can be doped in a straightforward manner while the shell offers the highest possible sensitivity when functionalized with (bio)chemical binders, polystyrene particles were coated with different kinds of mesoporous silica shells in a convergent growth approach. Mesoporous shells allow us to obtain distinctly higher surface areas in comparison with conventional nonporous shells. While assessing the potential of narrow- as well as wide-pore silicas such as Mobil composition of matter no. 41 (MCM-41) and Santa Barbara amorphous material no. 15 (SBA-15), especially the synthesis of the latter shells that are much more suitable for biomolecule anchoring was optimized by altering the pH and both, the amount and type of the mediator salt. Our studies showed that the best performing material resulted from a synthesis using neutral conditions and MgSO4 as an ionic mediator. The analytical potential of the particles was investigated in flow cytometric DNA assays after their respective functionalization for individual and multiplexed detection of short oligonucleotide strands. These experiments revealed that a two-step modification of the silica surface with amino silane and succinic anhydride prior to coupling of an amino-terminated capture DNA (c-DNA) strand is superior to coupling carboxylic acid-terminated c-DNA to aminated core/shell particles, yielding limits of detection (LOD) down to 5 pM for a hybridization assay, using labeled complementary single-stranded target DNA (t-DNA) 15mers. The potential of the use of the particles in multiplexed analysis was shown with the aid of dye-doped core particles carrying a respective SBA-15 shell. Characteristic genomic sequences of human papillomaviruses (HPV) were chosen as the t-DNA analytes here, since their high relevance as carcinogens and the high number of different pathogens is a relevant model case. The title particles showed a promising performance and allowed us to unequivocally detect the different high- and low-risk HPV types in a single experimental run. KW - Bead-based assay KW - Core-shell particles KW - Human papillomavirus KW - Mesoporous silica KW - Multiplexing PY - 2020 DO - https://doi.org/10.1021/acsami.0c17940 SN - 1944-8244 VL - 13 IS - 1 SP - 207 EP - 218 PB - American Chemical Society CY - Washington, DC AN - OPUS4-51955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sarma, Dominik A1 - Carl, Peter A1 - Climent Terol, Estela A1 - Schneider, Rudolf A1 - Rurack, Knut T1 - Multifunctional polystyrene core/silica shell microparticles with antifouling properties for bead-based multiplexed and quantitative analysis N2 - Commercial bead-based assays are commonly built upon polystyrene particles. The polymeric carrier can be encoded with organic dyes and has ideal material properties for cytometric applications such as low density and high refractive index. However, functional groups are conventionally integrated during polymerization and subsequent modification is limited to the reactivity of those groups. Additionally, polystyrene as the core material leads to many hydrophobic areas still being present on the beads’ surfaces even after functionalization, Rendering the particles prone to nonspecific adsorption during an application. The latter calls for several washing steps and the use of additives in (bio)analytical assays. In this contribution, we show how these limitations can be overcome by using monodisperse polystyrene (PS) core/silica (SiO2) shell particles (SiO2@PS). Two different hydrophobic BODIPY (boron−dipyrromethene) dyes were encapsulated inside a poly(vinylpyrrolidone) (PVP) -stabilized polystyrene core in different concentrations to create 5-plex arrays in two separate detection channels of a cytometer. A subsequent modification of the silica shell with an equimolar APTES/PEGS (aminopropyltriethoxysilane/polyethylene glycol silane) blend added multifunctional properties to the hybrid core/Shell microparticles in a single step: APTES provides amino groups for the attachment of a caffeine derivative (as a hapten) to create antigen-coupled microspheres; the PEG moiety effectively suppresses nonspecific binding of antibodies, endowing the surface with antifouling properties. The particles were applied in a competitive fluorescence immunoassay in suspension, and a highly selective wash-free assay for the detection of caffeine in beverages was developed as a proof of concept. KW - Core−shell particles KW - Bead-based assay KW - Multiplex KW - Antifouling surface KW - Mixed surface PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472931 UR - https://pubs.acs.org/doi/10.1021/acsami.8b10306 DO - https://doi.org/10.1021/acsami.8b10306 SN - 1944-8244 VL - 11 IS - 1 SP - 1321 EP - 1334 PB - American Chemical Society CY - Online Library AN - OPUS4-47293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Climent Terol, Estela A1 - Gojani, Ardian A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Generalized Analysis Approach of the Profile Roughness by Electron Microscopy with the Example of Hierarchically Grown Polystyrene–Iron Oxide–Silica Core–Shell–Shell Particles N2 - The roughness as a property of core–shell (CS) microparticles plays a key role in their functionality. Quantitative evaluation of the roughness of CS microparticles is, however, a challenging task with approaches using electron microscopy images being scarce and showing pronounced differences in terms of methodology and results. This work presents a generalized method for the reliable roughness determination of nonplanar specimens such as CS particles from electron microscopic images, the method being robust and reproducible with a high accuracy. It involves a self-written software package (Python) that analyzes the recorded images, extracts corresponding data, and calculates the roughness based on the deviation of the identified contour. Images of single particles are taken by a dual mode scanning electron microscopy (SEM) setup which permits imaging of the same field-of-view of the sample with high resolution and surface sensitive in SE InLens mode as well as in transmission mode (TSEM). Herein, a new type of polystyrene core–iron oxide shell–silica shell particles is developed to serve as a set of lower micrometer-sized study objects with different surface roughness; the analysis of their images by the semiautomatic workflow is demonstrating that the particles’ profile roughness can be quantitatively obtained. KW - Core–shell particles KW - Image analysis KW - Nanoparticles KW - Roughness KW - SEM KW - transmission mode PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542576 DO - https://doi.org/10.1002/adem.202101344 SP - 1 EP - 9 PB - Wiley-VCH AN - OPUS4-54257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hecht, Mandy A1 - Climent Terol, Estela A1 - Biyikal, Mustafa A1 - Sancenón, F. A1 - Martínez-Mánez, Ramon A1 - Rurack, Knut T1 - Gated hybrid delivery systems: En route to sensory materials with inherent signal amplification N2 - Hybrid nanoparticles with a large specific surface area are a particularly exciting vehicle for delivery applications. Such highly porous or container-like structures, usually prepared from silica and frequently from gold, can incorporate a large number of chemical substances such as drug and/or indicator molecules. When equipped with a chemically or physically addressable gating function at the openings of the voids, the release of the cargo can be controlled at will. Because many more molecules can be stored as cargo in the pores of the support than there are functional groups as anchoring sites for the gating entities attached to the outer surface (for efficient pore capping), the systems possess inherent features of (signal) amplification. The present article will introduce various design strategies for different types of physical (light, temperature, magnetism) and chemical (pH, metal ions, anion, small organic molecules, enzymes) stimuli in connection with drug and indicator release. We will highlight exciting aspects of combining both features in theranostic applications and will stress which requirements still have to be met by many of the systems to be readily applicable in a sensory context. KW - Delivery systems KW - Hybrid materials KW - Molecular gates KW - Sensing KW - Theranostics KW - Freisetzungssysteme KW - Hybridmaterialien KW - Molekulare Gatter KW - Sensorik KW - Theranostik PY - 2013 DO - https://doi.org/10.1016/j.ccr.2013.03.020 SN - 0010-8545 VL - 257 IS - 17-18 SP - 2589 EP - 2606 PB - Elsevier CY - Amsterdam AN - OPUS4-28940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giménez, C. A1 - Climent Terol, Estela A1 - Aznar, E. A1 - Martínez-Mánez, Ramon A1 - Sancenón, F. A1 - Marcos, D. A1 - Amorós, P. A1 - Rurack, Knut T1 - Towards chemical communication between gated nanoparticles N2 - The design of comparatively simple and modularly configurable artificial systems able to communicate through the exchange of chemical messengers is, to the best of our knowledge, an unexplored field. As a proof-of-concept, we present here a family of nanoparticles that have been designed to communicate with one another in a hierarchical manner. The concept involves the use of capped mesoporous silica supports in which the messenger delivered by a first type of gated nanoparticle is used to open a second type of nanoparticle, which delivers another messenger that opens a third group of gated nanoobjects. We believe that the conceptual idea that nanodevices can be designed to communicate with one another may result in novel applications and will boost further advances towards cooperative systems with complex behavior as a result of the communication between simple abiotic individual components. KW - Chemical communication KW - Gated nanoparticles KW - Mesoporous materials KW - Nanoparticles community KW - Nanoparticles PY - 2014 DO - https://doi.org/10.1002/anie.201405580 SN - 1433-7851 SN - 1521-3773 SN - 0570-0833 VL - 53 IS - 46 SP - 12629 EP - 12633 PB - Wiley-VCH CY - Weinheim AN - OPUS4-32136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Garrido, E. A1 - Climent Terol, Estela A1 - Marcos, M. D. A1 - Sancenón, F. A1 - Rurack, Knut A1 - Martínez-Máñez, R. T1 - Dualplex lateral flow assay for simultaneous scopolamine and "cannibal drug" detection based on receptor-gated mesoporous nanoparticles N2 - We report herein the design of a strip-based rapid test utilizing bioinspired hybrid nanomaterials for the in situ and at site detection of the drug scopolamine (SCP) using a smartphone for readout, allowing SCP identification in diluted saliva down to 40 nM in less than 15 min. For this purpose, we prepared a nanosensor based on mesoporous silica nanoparticles loaded with a fluorescent reporter (rhodamine B) and functionalized with bethanechol, a potent agonist of recombinant human muscarinic acetylcholine receptor M2 (M2-AChR). M2-AChR interaction with the anchored bethanechol derivative leads to capping of the pores. The sensing mechanism relies on binding of SCP to M2-AChR resulting in pore opening and delivery of the entrapped rhodamine B reporter. Moreover, the material was incorporated into strips for lateral-flow assays coupled to smartphone readout, giving fast response time, good selectivity, and exceptional sensitivity. In an attempt to a mobile analytical test system for law enforcement services, we have also developed a dualplex lateral flow assay for SCP and 3,4-methylenedioxypyrovalerone (MDPV) also known as the so-called “cannibal drug”. KW - Rapid tests KW - Vor-Ort-Analytik KW - Lateral Flow Assays KW - Scopolamine KW - Gesteuerte Freisetzung KW - Cannibal Drug PY - 2022 DO - https://doi.org/10.1039/d2nr03325a SP - 1 EP - 9 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-55744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costa, Elena A1 - Climent Terol, Estela A1 - Gawlitza, Kornelia A1 - Wan, Wei A1 - Weller, Michael G. A1 - Rurack, Knut T1 - Optimization of analytical assay performance of antibody-gated indicator-releasing mesoporous silica particles N2 - Antibody-gated indicator delivery (gAID) systems based on mesoporous silica nano- and microparticle scaffolds are a promising class of materials for the sensitive chemical detection of small-molecule analytes in simple test formats such as lateral flow assays (LFAs) or microfluidic chips. Their architecture is reminiscent of drug delivery systems, only that reporter molecules instead of drugs are stored in the voids of a porous host particle. In addition, the pores are closed with macromolecular “caps” through a tailored “gatekeeping” recognition chemistry so that the caps are opened when an analyte has reacted with a “gatekeeper”. The subsequent uncapping leads to a release of a large number of indicator molecules, endowing the system with signal amplification features. Particular benefits of such systems are their modularity and adaptability. With the example of the immunochemical detection of type-I pyrethroids by fluorescent dye-releasing gAID systems, the influence of several tuning modes on the optimisation of such hybrid sensory materials is introduced here. In particular, different mesoporous silica supports (from nano- and microparticles to platelets and short fibres), different functionalisation routes and different loading sequences were assessed. The materials’ performances were evaluated by studying their temporal response behaviour and detection sensitivity, including the tightness of pore closure (through the amount of blank release in the absence of analyte) and the release kinetics. Our results indicate that the better the paratope-accommodating Fab region of the antibody “cap” fits into the host material's pore opening, the better the closing/opening mechanism can be controlled. Because such materials are well-suited for LFAs, performance assessment included a test-strip format besides conventional assays in suspension. In combination with dyes as indicators and smartphones for read-out, simple analytical tests for use by untrained personnel directly at a point-of-need such as an aeroplane cabin can be devised, allowing for sensitivities down to the μg kg−1 range in <5 min with case-required selectivities. KW - Antibody-gated indicator delivery KW - Lateral flow assay KW - SBA-15 KW - SBA-16 KW - Type-I pyrethroids KW - Phenothrin KW - Permethrin KW - Etofenprox KW - Amplification KW - Biosensors KW - Immunoassays KW - Mesoporous particles KW - Optical detection PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517053 DO - https://doi.org/10.1039/d0tb00371a VL - 8 IS - 22 SP - 4950 EP - 4961 PB - Royal Society of Chemistry AN - OPUS4-51705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costa, Elena A1 - Climent Terol, Estela A1 - Ast, S. A1 - Weller, Michael G. A1 - Canning, J. A1 - Rurack, Knut T1 - Development of a lateral flow test for rapid pyrethroid detection using antibody-gated indicator-releasing hybrid materials N2 - The employment of type-I pyrethroids for airplane disinfection in recent years underlines the necessity to develop sensing schemes for the rapid detection of these pesticides directly at the point-of-use. Antibody-gated indicator-releasing materials were thus developed and implemented with test strips for lateral-flow assay-based analysis employing a smartphone for readout. Besides a proper matching of pore sizes and gating macromolecules, the functionalization of both the material's outer surface as well as the strips with PEG chains enhanced system performance. This simple assay allowed for the detection of permethrin as a target molecule at concentrations down to the lower ppb level in less than 5 minutes. KW - Lateral flow test KW - Gated hybrid material KW - Fluorescence KW - Smartphone readout device KW - Pyrethroid KW - Pesticide KW - Insecticide KW - SBA-15 KW - Permethrin PY - 2020 DO - https://doi.org/10.1039/d0an00319k SN - 0003-2654 SN - 1364-5528 VL - 145 IS - 10 SP - 3490 EP - 3494 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-50756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Weller, Michael G. A1 - Martínez-Mánez, R. A1 - Rurack, Knut T1 - Immunochemical design of antibody-gated indicator delivery (gAID) systems based on mesoporous silica nanoparticles N2 - In this work, the optimization of the immunochemical response of antibody-gated indicator delivery (gAID) systems prepared with mesoporous silica nanoparticles has been studied along various lines of system tailoring, targeting the peroxide-type explosive TATP as an exemplary analyte. The mechanism of detection of these gAID systems relies on a displacement of an antibody “cap” bound to hapten derivatives anchored to the surface of a porous hybrid material, allowing the indicator cargo stored in the mesopores to escape and massively amplify the analyte-related signal. Since our aim was to obtain gAID systems with the best possible response in terms of sensitivity, selectivity, and assay time, sera obtained from different immunization boosts were screened, the influence of auxiliary reagents was assessed, structural hapten modification (hapten heterology) was investigated, and various indicator dyes and host materials were tested. Considering that highly selective and sensitive immunological responses are best obtained with high-affinity antibodies which, however, could possess rather slow dissociation constants, leading to slow responses, the main challenge was to optimize the immunochemical recognition system for a rapid response while maintaining a high sensitivity and selectivity. The best performance was observed by grafting a slightly mismatching (heterologous) hapten to the surface of the nanoparticles in combination with high-affinity antibodies as “caps”, yielding for the first time gAID nanomaterials for which the response time could be improved from hours to <5 min. The materials showed favorable detection limits in the lower ppb range and discriminated TATP well against H2O2 and other explosives. Further optimization led to straightforward integration of the materials into a lateral flow assay without further treatment or conditioning of the test strips while still guaranteeing remarkably fast overall assay times. KW - Antibody-gated indicator delivery systems KW - Signal amplification KW - Immunochemical response optimization KW - Test strip analysis KW - TATP KW - Explosives detection KW - Heterologous hapten PY - 2022 DO - https://doi.org/10.1021/acsanm.1c03417 SN - 2574-0970 VL - 5 IS - 1 SP - 626 EP - 641 PB - American Chemical Society CY - Washington, DC AN - OPUS4-54176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Wan, Wei A1 - Rurack, Knut T1 - Toward Label-Free Optical Multiplexing of Analytes in Indicator Release Lateral Flow Assays via Detection Zones Containing Tailored Capture Materials N2 - The use of macromolecules and materials immobilized in the detection zone of test strips for indicator capture and focusing in label-free lateral flow assays (LFAs) is described, with emphasis on its future use in low number multiplexing. Several materials such as polyelectrolytes, functionalized mesoporous silica micro- and nanoparticles, chemically modified cellulose or glass fibre (GF) membranes and molecularly imprinted polymer gels coated onto membranes were studied in model assays, before the most promising materials were combined with antibody-gated indicator delivering (gAID) sensor materials. Cellulose, nitrocellulose and GF membranes were used as supports and highly fluorescent dyes of different charge states as model indicators. Combination of the best performing capture materials with gAID systems made it possible to distinctly increase the sensitivity and reduce the measurement uncertainty in the LFA testing of pentaerythritol tetranitrate (PETN) in aqueous samples. In addition, dual-plexing of PETN and 2,4,6-trinitrotoluene (TNT) was realized on a single test strip containing two dedicated capture zones. KW - Rapid tests KW - Vor-Ort-Analytik KW - Multiplexing KW - Teststreifen KW - Molecularly imprinted polymers PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557873 DO - https://doi.org/10.1002/anse.202100062 VL - 2 IS - 4 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -