TY - JOUR A1 - Schneider, Rudolf A1 - Teixiera, M. A1 - Almeida, Ângela A1 - Calisto, V. A1 - Esteves, V. I. A1 - Wrona, F. J. A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Freitas, R. T1 - Toxic effects of the antihistamine cetirizine in mussel Mytilus galloprovincialis N2 - Recent studies have become increasingly focused on the assessment of pharmaceuticals occurrence in aquatic ecosystems, however the potential toxicity to non-target organisms is still largely unknown. The antihistamine cetirizine is a commonly used pharmaceutical, already detected in surface waters of marine aquatic systems worldwide. In the present study Mytilus galloprovincialis mussels were exposed to a range of cetirizine concentrations (0.3, 3.0, 6.0 and 12.0 mu/L), resembling moderate to highly contaminated areas, over 28 days. The responses of different biochemical markers were evaluated in mussels whole soft tissue, and included energy-related parameters (glycogen content, GLY; protein content, PROT; electron transport system activity, ETS), and oxidative stress markers (superoxide dismutase activity, SOD; catalase activity, CAT; glutathione S-transferases activity, GSTs; lipid peroxidation levels, LPO; reduced (GSH) and oxidized (GSSG) glutathione content). The results obtained demonstrated that with the increase of exposure concentrations mussels tended to increase their energy reserves and maintain their metabolic potential, which was significantly higher only at the highest concentration. Our findings clearly revealed that cetirizine inhibited the activity of GSTs and although induced the activity of antioxidant enzymes (SOD and CAT) mussels were not able to prevent cellular damages observed through the increase of LPO associated to the increase of exposure concentrations. Thus, this study confirmed that cetirizine induces toxic effects in Mytilus galloprovincialis, which, considering their trophic relevance, wide use as bioindicator and wide spatial distribution of this species, can result in ecological and economic negative impacts at a large scale. KW - Bivalves KW - Biomarkers KW - Oxidative Stress PY - 2017 U6 - https://doi.org/10.1016/j.watres.2017.02.032 SN - 0043-1354 VL - 114 SP - 316 EP - 326 AN - OPUS4-43302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Rudolf A1 - Oliveira, P. A1 - Almeida, Ângela A1 - Calisto, V. A1 - Esteves, V. I. A1 - Wrona, F. J. A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Freitas, R. T1 - Physiological and biochemical alterations induced in the mussel Mytilus galloprovincialis after short and long-term exposure to carbamazepine N2 - The bivalve Mytilus galloprovincialis collected in the Ria de Aveiro, was selected to evaluate the acute and chronic effects of carbamazepine (CBZ) at environmentally relevant concentrations. CBZ is an antiepileptic drug widely found in the aquatic environment with toxic effects to inhabiting organisms. However, few studies evaluated the acute and chronic toxicity of this drug. The experiment was performed 'by exposing mussels to 0.0, 0.3, 3.0, 6.0 and 9.0 CBZ mu g/L, for 96 h and 28 days. To assess the toxicity of the drug, a battery of biomarkers related to mussels general physiological health status and oxidative stress was applied. CBZ was quantified in mussel tissues by an Enzyme-Linked Immunosorbent Assay (ELISA). The results obtained show that CBZ did not induce oxidative stress. However, our findings,demonstrated that the drug was taken up by mussels even though presenting low bioconcentration factor (BCF) values (up to 2.2). Furthermore, our results demonstrated that after a chronic exposure the physiological parameters, namely the condition and gonadosomatic indices, were negatively affected which may impair organisms' reproductive capacity with consequences to population sustainability. KW - Pharmaceuticals KW - Bivalves KW - Oxidative Stress PY - 2017 U6 - https://doi.org/10.1016/j.watres.2017.03.052 SN - 0043-1354 VL - 117 SP - 102 EP - 114 PB - Elsevier Ltd. AN - OPUS4-43304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -