TY - JOUR A1 - Almeida, Â. A1 - Freitas, R. A1 - Calisto, V. A1 - Esteves, V. I. A1 - Schneider, Rudolf A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Campos, B. A1 - Barata, C. T1 - Effects of carbamazepine and cetirizine under an ocean acidification scenario on the biochemical and transcriptome responses of the clam Ruditapes philippinarum N2 - Several works evaluated the toxicity of pharmaceutical drugs and climate related changes in invertebrates but few explored the combined effects of both stressors, namely considering their mode of action (MoA). Carbamazepine (CBZ) and cetirizine (CTZ) are pharmaceutical drugs detected in the environment and the toxicity derived from the combined effects of these drugs with ocean acidification (OA) is poorly explored. Thus, the present study investigated the biochemical parameters related to an oxidative stress response and the transcription of genes related to the MoA of CBZ (1.0 mg/L) and CTZ (0.6 mg/L) in the clam Ruditapes philippinarum chronically exposed (28 days) to control (7.8) and low (7.5) pH conditions. The results obtained showed that despite the clams accumulated both drugs, at low pH the clams exposed to CTZ decreased drug concentration and BCF values (CTZ uptake: 2.0 ± 0.5 ng/g fresh weight; BCF: 3.8 ± 0.9) in comparison with clams exposed to control pH (CTZ uptake: 2.9 ± 0.3 ng/g fresh weight; BCF: 5.5 ± 0.6). No oxidative stress was induced by the exposure to CBZ or CTZ at each pH level, but the transcription of several genes related with the MoA (neurotransmission, immunity and biomineralization) was altered by low pH, drug exposure and the combination of both stressors. At both pH conditions, CBZ increased the transcription of GABA receptor gene (neurotransmission) and CTZ led to a decrease of Perlucin gene (biomineralization) transcription. The transcription of MyD88 gene (immunity) decreased at low pH (7.5) combined with drug exposure (CBZ or CTZ). Thus, it was highlighted that the interaction of drug exposure and low pH conditions can change bivalves’ sensitivity to drugs or alter drugs toxicity. KW - Carbamazepine KW - Biomarker KW - ELISA KW - Biochemische Parameter PY - 2018 U6 - https://doi.org/10.1016/j.envpol.2017.12.121 SN - 0269-7491 VL - 235 SP - 857 EP - 868 PB - Elsevier Ltd. CY - Amsterdam, NL AN - OPUS4-44739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Almeida, Â. A1 - Calisto, V. A1 - Esteves, V.I. A1 - Schneider, Rudolf A1 - Soares, A.M.V.M. A1 - Figueira, E. A1 - Freitas, R. T1 - Effects of single and combined exposure of pharmaceutical drugs (carbamazepine and cetirizine) and a metal (cadmium) on the biochemical responses of R. philippinarum N2 - In the aquatic environment, organisms are exposed to complex mixtures of contaminants which may alter the toxicity profile of each compound, compared to its toxicity alone. Pharmaceutical drugs (e.g. carbamazepine (CBZ) and cetirizine (CTZ)) and metals (e.g. cadmium (Cd)) are among those contaminants that co-occur in the environment. However, most studies concerning their toxicity towards aquatic species are based on single exposure experiments. Thus, the present study aimed to evaluate single and combined effects of Cd and CBZ or CTZ (single conditions: Cd, CTZ, CBZ; combined conditions: CTZ+Cd, CBZ+Cd) on biomarkers related to oxidative stress and energy metabolism in the edible clam Ruditapes philippinarum, by exposing the organisms for 28 days to environmentally relevant concentrations of these contaminants. The biomarkers studied were: i) the electron transport system activity, protein and glycogen contents (indicators of organisms’ metabolic status and energy reserves); ii) lipid peroxidation and the ratio between reduced and oxidized glutathione (indicators of oxidative stress); iii) superoxide dismutase and catalase activities (enzymes indicators of antioxidant defence) and iv) activity of glutathione S-transferases (family of enzymes indicators of biotransformation capacity). Results obtained showed that the uptake of Cd and CBZ was not affected by the combined presence of the contaminants. However, for CTZ, the uptake was higher in the presence than in the absence of Cd. Concerning toxicity data, in general, the combined exposures (CTZ+Cd, CBZ+Cd) had lower biological effects than the contaminants alone. Nevertheless, our data showed that despite the low concentrations tested, they were enough to exert biological effects that differed between single and combined treatments, evidencing the need to conduct more co-exposure studies to increase the environmental relevance of the gathered data. KW - Biomarker KW - Arzneimittel KW - Metalle KW - Invertebraten KW - ELISA KW - Carbamazepine KW - Cetirizine PY - 2018 U6 - https://doi.org/10.1016/j.aquatox.2018.02.011 SN - 0166-445X SN - 1879-1514 VL - 198 SP - 10 EP - 19 PB - Elsevier CY - Amsterdam, NL AN - OPUS4-44902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Almeida, Â. A1 - Calisto, V. A1 - Esteves, V. A1 - Schneider, Rudolf A1 - Figueira, E. A1 - Soares, A. A1 - Freitas, R. T1 - Can ocean warming alter sub-lethal effects of antiepileptic and antihistaminic pharmaceuticals in marine bivalves? N2 - The negative effects induced in marine organisms by Climate Change related abiotic factors consequences, namely ocean warming, are well-known. However, few works studied the combined impacts of ocean warming and contaminants, as pharmaceutical drugs. Carbamazepine (CBZ) and cetirizine (CTZ) occur in the marine environment, showing negative effects in marine organisms. This study aimed to evaluate the impacts of Ocean warming on the effects of CBZ and CTZ, when acting individually and combined (drug vs drug), in the edible clam Ruditapes philippinarum. For that, drugs concentration, bioconcentration factors and biochemical parameters, related with clam’s metabolic capacity and oxidative stress, were evaluated after 28 days exposure to environmentally relevant scenarios of these stressors. The results showed limited impacts of the drugs (single and combined) at control and warming condition. Indeed, it appeared that warming improved the oxidative status of contaminated clams (higher reduced to oxidized glutathione ratio, lower lipid peroxidation and Protein carbonylation levels), especially when both drugs were combined. This may result from clam’s defence mechanisms activation and reduced metabolic capacity that, respectively, increased elimination and limited production of reactive oxygen species. At low stress levels, defence mechanisms were not activated which resulted into oxidative stress. The present findings highlighted that under higher stress levels clams may be able to activate defence strategies that were sufficient to avoid cellular damages and loss of redox homeostasis. Nevertheless, low concentrations were tested in the present study and the observed responses may greatly Change under increased pollution levels or temperatures. Further research on this topic is needed since marine heat waves are increasing in frequency and intensity and pollution levels of some pharmaceuticals are also increasing in coastal systems. KW - Klimaerwärmung KW - Meer KW - Antiepileptika KW - Antihistaminika KW - Muscheln KW - Immunoassay KW - ELISA KW - Carbamazepine KW - Cetirizine PY - 2021 U6 - https://doi.org/10.1016/j.aquatox.2020.105673 SN - 0166-445X VL - 230 SP - 105673 PB - Elsevier B.V. AN - OPUS4-51840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -