TY - JOUR A1 - Schneider, Rudolf A1 - Almeida, Ângela A1 - Calisto, V. A1 - Esteves, V. I. A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Freitas, R. T1 - Ecotoxicity of the antihistaminic drug cetirizine to Ruditapes philippinarum clams N2 - Cetirizine (CTZ) is an antihistaminic drug present in the aquatic environment, with limited information on its toxicity to organisms inhabiting this system. This study intended to evaluate the effects of CTZ on oxidative stress and energy metabolism biomarkers in the edible clam Ruditapes philippinarum after a 28 days exposure to environmentally relevant CTZ concentrations (0.0, 0.3, 3.0, 6.0 and 12.0 mu g/L). The results obtained showed that CTZ was accumulated by clams reaching maximum concentrations (up to similar to 22 ng/g FW) at the highest CTZ exposure concentrations (6.0 and 12.0 mu g/L). The bioconcentration factor (average maximum values of similar to 5) decreased at 12.0 mu g/L reflecting a reduction in clams uptake or increase of excretion capacity at this condition. The present study revealed that, in general, clams decreased the metabolic potential after exposure to CTZ (decrease in electron transport system activity), a response that led to the maintenance of glycogen content in organisms exposed to CTZ in comparison to control values. Our findings also showed that, CTZ did not exert significant levels of oxidative injury to clams. However, comparing the control with the highest exposure concentrations (6.0 and 12.0 mu g/L) a significant increase of the antioxidant enzyme superoxide activity (similar to 53 and similar to 44%) was observed in clams exposed to CTZ. Moreover, a tendency to increase lipid peroxidation (similar to 14 and similar to 9%) and carbonyl groups on proteins (similar to 11 and similar to 3%) was observed in clams exposed to CTZ (6.0 and 12.0 mu g/L) compared to control condition. Overall the present study suggests that toxic impacts may be induced in R. philippinarum if exposed for longer periods or higher CTZ concentrations. KW - Antihistamines KW - Clams KW - Biomarkers PY - 2017 U6 - https://doi.org/10.1016/j.scitotenv.2017.05.149 SN - 0048-9697 VL - 601 SP - 793 EP - 801 PB - Elsevier B.V. AN - OPUS4-43311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Freitas, R. A1 - Almeida, Ângela A1 - Calisto, V. A1 - Velez, C. A1 - Moreira, A. A1 - Schneider, Rudolf A1 - Esteves, V. I. A1 - Wrona, F. J. A1 - Figueira, E. A1 - Soares, A. M. V. M. T1 - The impacts of pharmaceutical drugs under ocean acidification: Newdata on single and combined long-term effects of carbamazepine on Scrobicularia plana N2 - Ocean acidification and increasing discharges of pharmaceutical contaminants into aquatic systems are among key and/or emerging drivers of environmental change affecting marine ecosystems. A growing body of evidence demonstrates that ocean acidification can have direct and indirect impacts on marine organisms although combined effects with other stressors, namely with pharmaceuticals, have received very little attention to date. The present study aimed to evaluate the impacts of the pharmaceutical drug Carbamazepine and pH 7.1, acting alone and in combination, on the clamScrobicularia plana. For this, a long-termexposure (28 days)was conducted and a set of oxidative stress markers was investigated. The results obtained showed that S. plana was able to develop mechanisms to prevent oxidative damage when under low pH for a long period, presenting higher survival when exposed to this stressor compared to CBZ or the combination of CBZ with pH 7.1. Furthermore, the toxicity of CBZ on S. plana was synergistically increased under ocean acidification conditions (CBZ + pH 7.1): specimens survival was reduced and oxidative stress was enhanced when compared to single exposures. These findings add to the growing body of evidence that ocean acidification will act to increase the toxicity of CBZ to marine organisms,which has clear implications for coastal benthic ecosystems suffering chronic pollution from pharmaceutical drugs. KW - Ocean acidification KW - Pharmaceuticals KW - Biomarkers KW - Oxidative stress KW - Clams KW - Long-term exposures PY - 2016 U6 - https://doi.org/10.1016/j.scitotenv.2015.09.138 VL - 541 SP - 977 EP - 985 PB - Elsevier B.V. AN - OPUS4-38502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Almeida, Ângela A1 - Calisto, V. A1 - Esteves, V.I. A1 - Schneider, Rudolf A1 - Soares, A.M.V.M. A1 - Figueira, E. A1 - Freitas, R. T1 - Presence of the pharmaceutical drug carbamazepine in coastal systems: Effects on bivalves N2 - Carbamazepine (CBZ), an antiepileptic drug, is one of the most commonly detected pharmaceutical drugs in aquatic ecosystems, and is used as a marker of urban pollution. Since CBZ is designed to exert a biological effect, when it reaches aquatic environment high probability exist for toxic effects on non-target organisms. The present study evaluated the acute toxicity of environmentally relevant concentrations of CBZ (0.00, 0.03, 0.30, 3.00, 9.00 µg/L) in the edible clams Venerupis decussata (a native species) and Venerupis philippinarum (an invasive species) collected from the Ria de Aveiro. The effects on both species were assessed through the use of a battery of biomarkers mainly related with health status and oxidative stress. Furthermore, in this work an alternative and promising tool, the direct competitive immunoassay ELISA, for the direct CBZ quantification in clam's tissues, was applied. The results of the present work showed that CBZ in clam's tissues increased with the exposure concentration and V. decussata gave slightly higher values than V. philippinarum. Although the clams accumulated lower levels of CBZ than the concentration of exposure, these concentrations were enough to impair the health status and induce oxidative stress. However, a different response to CBZ was observed in the two species. While in V. philippinarum the lipid peroxidation levels increased at the highest CBZ concentration (9.00 µg/L), in V. decussata a significant decrease was seen. Moreover, glutathionse S-transferase activity was stimulated in V. decussata and decreased in V. philippinarum. Nevertheless, an induction of glutathione reductase, superoxide dismutase and cytochrome P450 3A4 activities was found in both species as a result of the exposure. The results indicate that, probably, V. philippinarum have a less efficient antioxidant system than V. decussata, and are therefore less capable to neutralize oxidative stress and consequently more sensitive to CBZ. The risk quotient determined for the Ria de Aveiro was higher than 1 indicating that a ecotoxicological risk is suspected. Furthermore, bioaccumulation of CBZ in clams should be taken into consideration since this chemical might be transferred along the food chain and affect non-target organisms. KW - Acute toxicity KW - Biomarkers KW - ELISA immunoassay KW - Pharmaceuticals KW - Clams KW - Carbamazepin KW - Toxikologie KW - Toxicology PY - 2014 U6 - https://doi.org/10.1016/j.aquatox.2014.08.002 SN - 0166-445x SN - 1879-1514 VL - 156 SP - 74 EP - 87 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-31336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -