TY - JOUR A1 - Almeida, Â. A1 - Freitas, R. A1 - Calisto, V. A1 - Esteves, V. I. A1 - Schneider, Rudolf A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Campos, B. A1 - Barata, C. T1 - Effects of carbamazepine and cetirizine under an ocean acidification scenario on the biochemical and transcriptome responses of the clam Ruditapes philippinarum N2 - Several works evaluated the toxicity of pharmaceutical drugs and climate related changes in invertebrates but few explored the combined effects of both stressors, namely considering their mode of action (MoA). Carbamazepine (CBZ) and cetirizine (CTZ) are pharmaceutical drugs detected in the environment and the toxicity derived from the combined effects of these drugs with ocean acidification (OA) is poorly explored. Thus, the present study investigated the biochemical parameters related to an oxidative stress response and the transcription of genes related to the MoA of CBZ (1.0 mg/L) and CTZ (0.6 mg/L) in the clam Ruditapes philippinarum chronically exposed (28 days) to control (7.8) and low (7.5) pH conditions. The results obtained showed that despite the clams accumulated both drugs, at low pH the clams exposed to CTZ decreased drug concentration and BCF values (CTZ uptake: 2.0 ± 0.5 ng/g fresh weight; BCF: 3.8 ± 0.9) in comparison with clams exposed to control pH (CTZ uptake: 2.9 ± 0.3 ng/g fresh weight; BCF: 5.5 ± 0.6). No oxidative stress was induced by the exposure to CBZ or CTZ at each pH level, but the transcription of several genes related with the MoA (neurotransmission, immunity and biomineralization) was altered by low pH, drug exposure and the combination of both stressors. At both pH conditions, CBZ increased the transcription of GABA receptor gene (neurotransmission) and CTZ led to a decrease of Perlucin gene (biomineralization) transcription. The transcription of MyD88 gene (immunity) decreased at low pH (7.5) combined with drug exposure (CBZ or CTZ). Thus, it was highlighted that the interaction of drug exposure and low pH conditions can change bivalves’ sensitivity to drugs or alter drugs toxicity. KW - Carbamazepine KW - Biomarker KW - ELISA KW - Biochemische Parameter PY - 2018 U6 - https://doi.org/10.1016/j.envpol.2017.12.121 SN - 0269-7491 VL - 235 SP - 857 EP - 868 PB - Elsevier Ltd. CY - Amsterdam, NL AN - OPUS4-44739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Almeida, Â. A1 - Calisto, V. A1 - Esteves, V. I. A1 - Schneider, Rudolf A1 - Soares, A. M. V. M. A1 - Freitas, R. T1 - Responses of Ruditapes philippinarum to contamination by pharmaceutical drugs under ocean acidification scenario N2 - In coastal systems, organisms are exposed to amultitude of stressors whose interactions and effects are poorly studied. Pharmaceutical drugs and Climate Change consequences, such as lowered pH, are examples of stressors affecting marine organisms, as bivalves. Although a vast literature is available for the effects of these stressors when acting individually, very limited information exists on the impacts that the combination of both can have on marine bivalves. For this reason, this study aimed to evaluate the impacts of a simulated ocean acidification scenario (control pH, 8.0; lowered pH, pH 7.6) on the effects of the antiepileptic carbamazepine (CBZ, 1 μg/L) and the antihistamine cetirizine (CTZ, 0.6 μg/L), when acting individually and combined (CBZ + CTZ), on the edible clam Ruditapes philippinarum. After 28 days of exposure, drug concentrations, bioconcentration factors and biochemical parameters related to the clams' metabolic capacity and oxidative stress were evaluated. The results showed that R. philippinarum clams responded differently to pharmaceutical drugs depending on the pH tested, influencing both bioconcentration and biological responses. In general, drug combined treatments showed fewer impacts than drugs acting alone, and acidification seemed to activate at a higher extension the elimination processes that were not activated under control pH. Also, lowered pH per se exerted negative impacts (e.g., cellular damage) on R. philippinarum and the combination with pharmaceutical drugs did not enhance the toxicity. KW - Biosensoren KW - Immunoassay KW - ELISA KW - Vor-Ort-Analytik KW - Toxikologie KW - Pharmaceutical drugs KW - Bivalves KW - Ocean acidification KW - Biomarkers KW - Climate change PY - 2022 U6 - https://doi.org/10.1016/j.scitotenv.2022.153591 SN - 1879-1026 VL - 824 SP - 1 EP - 11 PB - Elsevier Science CY - Amsterdam AN - OPUS4-55590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Rudolf A1 - Almeida, Â. A1 - Calisto, V. A1 - Esteves, V. I. A1 - Soares, A. M. V. M. A1 - Freitas, R. T1 - Salinity-dependent impacts on the effects of antiepileptic and antihistaminic drugs in Ruditapes philippinarum N2 - In Coastal Systems, pollutants as pharmaceutical drugs exert changes from the molecular to the organism level in marine bivalves. Besides pollutants, Coastal Systems are prone to changes in environmental Parameters, as the alteration of salinity values because of Climate Change. Together, these Stressors (pharmaceutical drugs and salinity changes) can exert different threats than each Stressor acting individually; for example, salinity can change the physical-chemical properties of the drugs and/or the sensitivity of the organisms to them. However, limited Information is available on this subject, with variable results, and for this reason, this study aimed to evaluate the impacts of salinity changes (15,25 and 35) on the effects of the antiepileptic carbamazepine (CBZ, 1 (ig/L) and the antihistamine cetirizine (CTZ, 0.6 pg/L), when acting individually and combined (CBZ + CTZ), in the edible clam Ruditapes philippinarum. After 28 days ofexposure, drugs concentrations, bioconcentration factors and biochemical parameters, related to clam's metabolic caparity and oxidative stress were evaluated. The results showed that dams under low salinity suffered more changes in metabolic, antioxidant and biotransformation activities, in comparison with the remaining salinities under study. However, limited impacts were observed when comparing drug effects at low salinity. Indeed, it seemed that CTZ and CBZ + CTZ, under high salinity (salinity 35) were the worst exposure conditions for the dams, since they caused higher leveis of cellular damage. It Stands out that salinity changes altered the impact of pharmaceutical drugs on marine bivalves. KW - Muscheln KW - Salinität KW - Carbamazepin KW - Cetirizin KW - ELISA KW - Immunoassay KW - Antiepileptikum PY - 2022 U6 - https://doi.org/10.1016/j.scitotenv.2021.150369 SN - 1879-1026 VL - 806 SP - 1 EP - 13 PB - Elsevier Science CY - Amsterdam AN - OPUS4-55561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -