TY - JOUR A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Garcés, G. T1 - The role of reinforcement orientation on the damage evolution of AlSi12CuMgNi + 15% Al2O3 under compression JF - Scripta Materialia N2 - Internal damage of an AlSi12CuMgNi alloy reinforced with planar random short fibres has been investigated after compression. This damage strongly influences the load partition between matrix and reinforcement. For fibres perpendicular to the applied load, breakage and interconnected cracks appear in significantly higher volume fraction than with fibres parallel to load. KW - Neutron Diffraction KW - Damage KW - Metal Matrix Composites KW - Load Partition KW - Synchrotron CT PY - 2016 DO - https://doi.org/10.1016/j.scriptamat.2016.05.023 SN - 1359-6462 VL - 122 SP - 115 EP - 118 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-36357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pérez, P. A1 - Cabeza, Sandra A1 - Garcés, G. A1 - Adeva, Paloma T1 - Influence of long period stacking ordered phase arrangements on thecorrosion behaviour of extruded Mg97Y2Zn1 alloy JF - Corrosion Science N2 - The influence of second phase arrangements on the corrosion resistance of extruded Mg97Y2Zn1 alloy has been evaluated in a 0.1 M NaCl solution. The microstructure of the alloy consists of a high volume fraction of coarse elongated particles of a long period stacking ordered phase aligned along the extrusion direction. Corrosion rate of transversal sections is lower than that of longitudinal sections. Such difference is attributed to the different orientation of second phases in longitudinal and transversal sections. The corrosion front advances mainly perpendicular to the surface in transversal samples while perpendicular and lateral growth occur in longitudinal samples KW - passive films KW - Magnesium alloys KW - anodic dissolution PY - 2016 DO - https://doi.org/10.1016/j.corsci.2016.02.024 SN - 0010-938X VL - 107 SP - 107 EP - 112 PB - Elsevier Ltd. CY - Oxford, UK AN - OPUS4-36358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Garcés, G. A1 - Requena, G. T1 - The role of reinforcement orientation on the damage evolution of AlSi12CuMgNi +15% Al2O3 under compression JF - Scripta Materialia N2 - Internal damage of an AlSi12CuMgNi alloy reinforced with planar randomshort fibres has been investigated after compression. This damage strongly influences the load partition between matrix and reinforcement. For fibres perpendicular to the applied load, breakage and interconnected cracks appear in significantly higher volume fraction than with fibres parallel to load. KW - Metal Matrix Composites KW - Damage KW - Load partition KW - Synchrotron CT KW - Neutron diffraction PY - 2016 VL - 122 SP - 115 EP - 118 PB - Elsevier Ltd. AN - OPUS4-37975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Sevostianov, I. A1 - Cabeza, Sandra A1 - Mishurova, Tatiana T1 - Average phase stress concentrations in multiphase metal matrix composites under compressive loading JF - International Journal of Engineering Science N2 - We develop a model to predict average over individual phases stress concentrations in a multiphase metal matrix composite under compressive loading. The model accounts for matrix plasticity through variation of the shear modulus with applied stress and for frac- ture of filler through change in the shape of the particles. Three micromechanical models are compared –non interaction approximation, Mori–Tanaka–Benveniste (MTB) scheme, and Maxwell scheme. Comparison with the experimental measurements of Cabeza et al. (2016) shows that Maxwell scheme generally predicts the stress concentration with satis- factory accuracy. Results of MTB scheme vary depending on the loading case and ignoring of the interaction leads to substantial overestimation of the stresses. KW - Average phase stress concentrations KW - metal matrix composite KW - multiphase composite PY - 2016 DO - https://doi.org/10.1016/j.ijengsci.2016.06.004 SN - 0020-7225 VL - 106 SP - 245 EP - 261 PB - Elsevier Ltd. AN - OPUS4-37738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cabeza, Sandra A1 - Garcés, G. A1 - Pérez, P. A1 - Adeva, Paloma T1 - Properties of WZ21 (%wt) alloy processed by a powder metallurgy route JF - Journal of the mechanical behavior of biomedical materials N2 - Microstructure, mechanical properties and corrosion behaviour of WZ21 (%wt.) alloy prepared by a powder metallurgy route from rapidly solidified powders have been studied. Results were compared to those of the same alloy prepared through a conventional route of casting and extrusion. The microstructure of the extruded ingot consisted of α-Mg grains and Mg3Zn3Y2 (W-phase) and LPSO-phase particles located at grain boundaries. Moreover, stacking faults were also observed within α-Mg grains. The alloy processed by the powder metallurgy route exhibited a more homogeneous and finer microstructure, with a grain size of 2 µm. In this case W-phase and Mg24Y5 phase were identified, but not the LPSO-phase. The microstructural refinement induced by the use of rapidly solidified powders strengthened the alloy at room temperature and promoted superplasticity at higher strain rates. Corrosion behaviour in PBS medium evidenced certain physical barrier effect of the almost continuous arrangements of second phases aligned along the extrusion direction in conventionally processed WZ21 alloy, with a stable tendency around 7 mm/year. On the other hand, powder metallurgy processing promoted significant pitting corrosion, inducing accelerated corrosion rate during prolonged immersion times. KW - Magnesium KW - RE KW - Microstructure KW - Creep KW - Corrosion PY - 2015 DO - https://doi.org/10.1016/j.jmbbm.2015.02.022 SN - 1751-6161 SN - 1878-0180 VL - 46 SP - 115 EP - 126 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-32704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stegemann, Robert A1 - Cabeza, Sandra A1 - Lyamkin, V. A1 - Bruno, Giovanni A1 - Pittner, Andreas A1 - Wimpory, Robert A1 - Boin, M. A1 - Kreutzbruck, Marc T1 - Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings JF - Journal of Magnetism and Magnetic Materials N2 - The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction(ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth. KW - GMR KW - Magnetic stray field KW - Neutron diffraction KW - Residual stress KW - TIG-welding PY - 2017 DO - https://doi.org/10.1016/j.jmmm.2016.11.102 SN - 0304-8853 SN - 1873-4766 VL - 426 SP - 580 EP - 587 PB - Elsevier CY - Amsterdam AN - OPUS4-38678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fernández, R. A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Fernández-Castrillo, P. A1 - González-Doncel, G. A1 - Bruno, Giovanni T1 - Residual stress and yield strength evolution with annealing treatments in an age-hardenable aluminum alloy matrix composite JF - Materials Science & Engineering A N2 - We investigated the possibility of minimizing tensile matrix residual stresses in age hardenable aluminum alloy metal matrix composites without detrimentally affect their mechanical properties (such as yield strength). Specifically, we performed thermal treatments at different temperatures and times in an age-hardenable aluminum matrix composite 2014Al-15vol%Al2O3. Using X-ray synchrotron radiation diffraction and mechanical tests, we show that below a certain treatment temperature (250 °C) it is possible to identify an appropriate thermal treatment capable of relaxing residual stress in this composite while even increasing its yield strength, with respect to the as processed conditions. KW - Residual stress KW - X-ray diffraction KW - Annealing treatment KW - Metal matrix composite KW - Yield strength PY - 2018 DO - https://doi.org/10.1016/j.msea.2018.06.031 SN - 0921-5093 SN - 1873-4936 VL - 731 SP - 344 EP - 350 PB - Elsevier CY - Amsterdam AN - OPUS4-45255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cabeza, Sandra A1 - Müller, Bernd R. A1 - Pereyra, R. A1 - Fernández, R. A1 - González-Doncel, G. A1 - Bruno, Giovanni T1 - Evidence of damage evolution during creep of Al–Mg alloy using synchrotron X-ray refraction JF - Journal of applied crystallography N2 - In order to provide further evidence of damage mechanisms predicted by the recent solid-state transformation creep (SSTC) model, direct observation of damage accumulation during creep of Al–3.85Mg was made using synchrotron X-ray refraction. X-ray refraction techniques detect the internal specific surface (i.e. surface per unit volume) on a length scale comparable to the specimen size, but with microscopic sensitivity. A significant rise in the internal specific surface with increasing creep time was observed, providing evidence for the creation of a fine grain substructure, as predicted by the SSTC model. This substructure was also observed by scanning electron microscopy KW - Aluminium alloys KW - Creep KW - Damage KW - Synchrotron X-ray refraction KW - Electron microscopy KW - subgrain structure PY - 2018 DO - https://doi.org/10.1107/S1600576718001449 SN - 1600-5767 VL - 51 SP - 420 EP - 427 PB - Wiley AN - OPUS4-44619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Klaus, Manuela A1 - Genzel, Christoph A1 - Haberland, Christoph A1 - Bruno, Giovanni T1 - The influence of the support structure on residual stress and distortion in SLM Inconel 718 parts JF - Metallurgical and materials transactions A N2 - The effect of support structure and of removal from the base plate on the residual stress state in selective laser melted IN718 parts was studied by means of synchrotron X-ray diffraction. The residual stresses in subsurface region of two elongated prisms in as-built condition and after removal from the base plate were determined. One sample was directly built on a base plate and another one on a support structure. Also, the distortion on the top surface due to stress release was measured by contact profilometry. High tensile residual stress values were found, with pronounced stress gradient along the hatching direction. In the sample on support, stress redistribution took place after removal from the base plate, as opposed to simple stress relaxation for the sample without support. The sample on support structure showed larger distortion compared to sample without support. We conclude that the use of a support decreases stress values but stress-relieving heat treatments are still needed. KW - Additive manufacturing KW - SLM KW - Residual stress KW - Synchrotron X-ray diffraction KW - IN718 PY - 2018 DO - https://doi.org/10.1007/s11661-018-4653-9 SN - 1073-5623 VL - 49A IS - 7 SP - 3038 EP - 3046 PB - Springer Sciences & Business Media CY - New York, NY AN - OPUS4-45100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Garces, G. A1 - Perez, P. A1 - Cabeza, Sandra A1 - Lin, H. K. A1 - Kim, S. A1 - Gan, W. A1 - Adeva, Paloma T1 - Reverse tension/compression asymmetry of a Mg-Y-Zn alloys containing LPSO phases JF - Materials science and engineering A N2 - Room temperature mechanical behavior of extruded Mg–Y–Zn alloys with varying fractions of LPSO phase was studied in tension and compression along the extrusion direction. The microstructure is characterised by elongated LPSO fibers along the extrusion direction within the magnesium matrix. Moreover, the magnesium matrix presents a bimodal grain structure with dynamically-recrystallized grains and deformed, elongated grains with the basal plane parallel to the extrusion direction. The beginning of plasticity depends on the volume fraction of deformed and DRX grains. Alloys with low volume fraction of LPSO phase (<10 vol%), with a high volume fraction of deformed grains, show the typical behavior of extruded magnesium alloys where yield stress in tension is higher than in compression. This effect is, however, reversed as the volume fraction of the LPSO phase increases since DRX grains are majority. PY - 2015 DO - https://doi.org/10.1016/j.msea.2015.09.003 SN - 0921-5093 SN - 1873-4936 VL - 647 SP - 287 EP - 293 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-35175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -