TY - JOUR A1 - Szczerba, Wojciech A1 - Schneider, M. A1 - Żukrowski, J. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Riesemeier, Heinrich A1 - Sikora, M. A1 - Mandel, K. T1 - Spectroscopic Study of the Role of Metal Ions in the Adsorption Process of Phosphate in Nanoscaled Adsorbers Based on Metal (Zn/ Fe/Zr) Oxyhydroxides JF - The Journal of Physical Chemistry C N2 - Currently great effort is made to find materials and technologies for the recycling of phosphate from wastewater. Herein, we present an in-depth study of the Phosphate adsorption mechanism of a promising adsorber material, a Zn−Fe−Zr oxyhydroxide-based nanostructured precipitate. The behavior of the multicomponent nanomaterial, consisting of both crystalline and amorphous parts, is investigated via X-ray absorption fine structure spectroscopy and Mössbauer spectroscopy, revealing the importance of the nanostructured composition for the phosphate adsorption. We found evidence that adsorption takes place especially in the vicinity of iron sites in the amorphous part of the material. KW - Zn-Fe-Zr nanoparticles KW - Adsorption of phosphate KW - XAFS KW - Catalysis PY - 2017 DO - https://doi.org/10.1021/acs.jpcc.7b04773 SN - 1932-7447 VL - 121 IS - 45 SP - 25033 EP - 25042 PB - ACS Publications AN - OPUS4-43348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rauwolf, M. A1 - Turyanskaya, A. A1 - Roschger, A. A1 - Prost, J. A1 - Simon, R. A1 - Scharf, O. A1 - Radtke, Martin A1 - Schoonjans, Tom A1 - de Oliveira Guilherme Buzanich, Ana A1 - Klaushofer, K. A1 - Wobrauschek, P. A1 - Hofstaetter, J. G. A1 - Roschger, P. A1 - Streli, C. T1 - Synchrotron radiation micro X-ray fluorescence spectroscopy of thin structures in bone samples: comparison of confocal and color X-ray camera setups JF - Journal of Synchrotron Radiation N2 - In the quest for finding the ideal synchrotron-radiation-induced imaging method for the investigation of trace element distributions in human bone samples, experiments were performed using both a scanning confocal synchrotron radiation micro X-ray fluorescence (SR-mXRF) (FLUO beamline at ANKA) setup and a full-field color X-ray camera (BAMline at BESSY-II) setup. As zinc is a trace element of special interest in bone, the setups were optimized for its detection. The setups were compared with respect to count rate, required measurement time and spatial resolution. It was demonstrated that the ideal method depends on the element of interest. Although for Ca (a major constituent of the bone with a low energy of 3.69 keV for its K alpha XRF line) the color X-ray camera provided a higher resolution in the plane, for Zn (a trace element in bone) only the confocal SR-µXRF setup was able to sufficiently image the distribution. KW - Synchrotron KW - BAMline KW - BESSY KW - XRF KW - X-ray Color Camera PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-391944 DO - https://doi.org/10.1107/S1600577516017057 SN - 1600-5775 VL - 24 SP - 307 EP - 311 PB - International Union of Crystallography AN - OPUS4-39194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Rui A1 - Russo, Patrícia A. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Jeon, Taeyeol A1 - Pinna, Nicola T1 - Hybrid organic–inorganic transition-metal phosphonates as precursors for water oxidation electrocatalysts JF - Advanced Functional Materials N2 - Efficient water oxidation catalysts are required for the development of water splitting technologies. Herein, the synthesis of layered hybrid NiFephenylphosphonate compounds from metal acetylacetonate precursors and phenylphosphonic acid in benzyl alcohol, and their Oxygen evolution reaction performance in alkaline medium, are reported. The hybrid particles are formed by inorganic layers of NiO6 and FeO6 distorted octahedra separated by bilayers of the organic group, and template the Formation in situ of NiFe hydroxide nanosheets of sizes between 5 and 25 nm and thicknesses between 3 and 10 nm. X-ray absorption spectroscopy measurements suggest that the hybrid also acts as a template for the local structure of the metal sites in the active catalyst, which remain distorted after the transformation. Optimum electrocatalytic activity is achieved with the hybrid compound with a Fe content of 16%. The combination of the synergistic effect between Ni and Fe with the structural properties of the hybrid results in an efficient catalyst that generates a current density of 10 mA cm−2 at an overpotential of 240 mV, and also in a stable catalyst that operates continuously at low overpotentials for 160 h. KW - Water oxydation catalysis KW - EXAFS PY - 2017 DO - https://doi.org/10.1002/adfm.201703158 SN - 1616-301X SN - 1616-3028 VL - 27 IS - 40 SP - Article 1703158, 1 EP - 11 PB - WILEY-VCH Verlag CY - Weinheim AN - OPUS4-42783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Scholz, G. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinsch, Stefan A1 - Kemnitz, E. A1 - Emmerling, Franziska T1 - Ca- and Sr- tetrafluoroisophthalates: mechanochemical synthesis, characterization, and ab initio structure determination JF - DALTON TRANSACTIONS N2 - New fluorinated coordination polymers were prepared mechanochemically by milling the alkaline earth metal hydroxides MII(OH)2·xH2O (MII: Ca, Sr) with tetrafluoroisophthalic acid (H2mBDC-F4). The structures of [{Ca(mBDC-F4)(H2O)2}·H2O] and [{Sr(mBDC-F4)(H2O)2}·H2O] were determined based on ab initio calculations and their powder X-ray diffraction (PXRD) data. The compounds are isomorphous and crystallize in the orthorhombic space group P212121. The determined structures were validated by using extended X-ray absorption (EXAFS) data. The new materials were thoroughly characterized using elemental analysis, thermal analysis, magic angle spinning NMR, and attenuated total reflection-infrared spectroscopy. Further characterization methods such as BET, dynamic vapor sorption, and scanning electron microscopy imaging were also used. Our investigations indicate that mechanochemistry is an efficient method for preparing such materials. KW - Mechanochemistry KW - In situ KW - XRD KW - Coordination polymers PY - 2017 UR - http://pubs.rsc.org/-/content/articlehtml/2017/dt/c7dt00734e DO - https://doi.org/10.1039/c7dt00734e VL - 46 IS - 18 SP - 6003 EP - 6012 AN - OPUS4-41516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana A1 - Kulow, Anicó A1 - Beyer, Sebastian A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich T1 - S2XAFS: Time-resolved X-ray absorption spectroscopy in a ‘single-shot’ – First in situ applications N2 - The newly developed EXAFS set-up comprises both time- and spatially-resolved EXAFS information simultaneously in a single-shot. This facile, stable and scanningless set-up was tested at the BAMline @ BESSY-II (Berlin, Germany). The pri-mary broadband beam is generated by a filter/X-ray-mirror combination (bandpass). The transmitted beam through the sample is diffracted by a convexly bent Si (111) crystal, producing a divergent beam. This, in turn, is collected by an area sensitive detector, in a theta - 2 theta geometry. The first in situ measurements were successfully carried out and hereby presented. The case-study deals with research on Zn-based Metal-Organic-Frameworks (MOFs) that have potential for medi-cal/pharmaceutical applications. This hot topic of MOF research targets encapsulation of therapeutically relevant bio-macromolecules (e.g. Enzymes) for drug delivery applications. Questions regarding the influence of proteins on the coor-dination of Zn during MOF crystal growth and within the final MOF can be answered with this new setup. We were able to track structural changes within a 1s time resolution. T2 - CSI XL Conference CY - Pisa, Italy DA - 12.06.2017 KW - Single-shot EXAFS KW - In situ characterization KW - Biomedical applications PY - 2017 AN - OPUS4-40683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -