TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana A1 - Michalchuk, Adam A1 - Cakir, Cafer Tufan A1 - Haider, M. B. A1 - Yusenko, Kirill A1 - Radtke, Martin A1 - Reinholz, U. A1 - Emmerling, Franziska T1 - Time resolved in situ monitoring of mechanochemical transformations by X-ray spectroscopy (XAS) N2 - Mechanochemical reactions promise a new direction for environmentally benign preparation of materials, and has been dubbed by IUPAC as one of the 10 chemical innovations that will change our world. Despite this significant promise, very little is known about the mechanisms that drive mechanochemical transformations, posing significant barriers to realizing their full potential. To this end, there is growing need to follow mechanochemical reactions in situ and in real time. We here describe advances in the development and application of XAS methods to monitor material synthesis in real time under mechanochemical conditions. We demonstrate the generality of our approaches by describing mechanochemical syntheses of materials by both vibratory ball milling and by Resonant Acoustic Mixing (RAM), where a time resolution of 1 second is for a whole XAS spectrum was achieved. Moreover, we describe how spectroscopic methods can be coupled to diffraction-based approaches, thereby providing new dimensions in understanding mechanochemical synthesis. T2 - AfLS3 CY - Online meeting DA - 14.11.2021 KW - Dipsersive XAS KW - Mechanochemistry KW - Time-resolved KW - In situ PY - 2021 AN - OPUS4-56256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana A1 - Michalchuk, Adam A1 - Cakir, Cafer Tufan A1 - Yusenko, Kirill A1 - Radtke, Martin A1 - Reinholz, U. A1 - Emmerling, Franziska T1 - Time resolved in situ monitoring of mechanochemical transformations by X-ray spectroscopy (XAS) N2 - Mechanochemical reactions promise a new direction for environmentally benign preparation of materials, and has been dubbed by IUPAC as one of the 10 chemical innovations that will change our world. Despite this significant promise, very little is known about the mechanisms that drive mechanochemical transformations, posing significant barriers to realizing their full potential. To this end, there is growing need to follow mechanochemical reactions in situ and in real time. We here describe advances in the development and application of XAS methods to monitor material synthesis in real time under mechanochemical conditions. We demonstrate the generality of our approaches by describing mechanochemical syntheses of materials by both vibratory ball milling and by Resonant Acoustic Mixing (RAM), where a time resolution of 1 second is for a whole XAS spectrum was achieved. Moreover, we describe how spectroscopic methods can be coupled to diffraction-based approaches, thereby providing new dimensions in understanding mechanochemical synthesis. T2 - Denver X-ray Conference: DXC 2021 CY - Online meeting DA - 02.08.2021 KW - Dispersive XAS KW - Mechanochemistry KW - Time resolved KW - In situ PY - 2021 AN - OPUS4-56257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - Time resolved in situ monitoring of mechanochemical transformations by X-ray absorption spectroscopy (XAS) N2 - Mechanochemical reactions promise a new direction for environmentally benign preparation of materials, and has been dubbed by IUPAC as one of the 10 chemical innovations that will change our world. Despite this significant promise, very little is known about the mechanisms that drive mechanochemical transformations, posing significant barriers to realizing their full potential. To this end, there is growing need to follow mechanochemical reactions in situ and in real time. We here describe advances in the development and application of XAS methods to monitor material synthesis in real time under mechanochemical conditions. We demonstrate the generality of our approaches by describing mechanochemical syntheses of materials by both vibratory ball milling and by Resonant Acoustic Mixing (RAM), where a time resolution of 1 second is for a whole XAS spectrum was achieved. Moreover, we describe how spectroscopic methods can be coupled to diffraction-based approaches, thereby providing new dimensions in understanding mechanochemical synthesis. T2 - European Conference on X-ray Spectrometry 2022 CY - Bruges, Belgium DA - 27.06.2022 KW - XAS KW - Mechanochemictry KW - Time resolved KW - In situ PY - 2022 AN - OPUS4-56258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - Time resolved in situ monitoring of mechanochemical transformations by X-ray absorption spectroscopy (XAS) N2 - Mechanochemical reactions promise a new direction for environmentally benign preparation of materials, and has been dubbed by IUPAC as one of the 10 chemical innovations that will change our world. Despite this significant promise, very little is known about the mechanisms that drive mechanochemical transformations, posing significant barriers to realizing their full potential. To this end, there is growing need to follow mechanochemical reactions in situ and in real time. We here describe advances in the development and application of XAS methods to monitor material synthesis in real time under mechanochemical conditions. We demonstrate the generality of our approaches by describing mechanochemical syntheses of materials by both vibratory ball milling and by Resonant Acoustic Mixing (RAM), where a time resolution of 1 second is for a whole XAS spectrum was achieved. Moreover, we describe how spectroscopic methods can be coupled to diffraction-based approaches, thereby providing new dimensions in understanding mechanochemical synthesis. T2 - Advances X ray Analytics Seminar at TU Berlin CY - Berlin, Germany DA - 14.06.2022 KW - XAS KW - Mechanochemistry KW - Time resolved KW - In situ PY - 2022 AN - OPUS4-56259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulow, Anicó A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Hampel, S. A1 - Fittschen, UEA A1 - Streli, C. A1 - Radtke, Martin T1 - Reconstruction for coded aperture full-field x-ray fluorescence imaging N2 - X-ray fluorescence imaging is a well-established tool in materials characterization. In this work, we present the adaption of coded aperture imaging to full-field X-ray fluorescence imaging at the synchrotron. Coded aperture imaging has its origins in astrophysics, and has several advantages: Coded apertures are relatively easy to fabricate, achromatic, allow a high photon throughput, and high angular acceptance. Coded aperture imaging is a two-step-process, consisting of the measurement process and a reconstruction step. Different programs have been written, for the raytracing/forward projection and the reconstruction. Experiments with coded aperture in combination with a Color X-ray Camera and an energy-dispersive area detector, have been conducted at the BAMline. Measured samples were successfully reconstructed, and gave a 9.1-fold increase in count rate compared to a polycapillary optic. KW - Synchrotron KW - BAMline KW - Coded Aperture PY - 2022 SN - 1097-0002 VL - 65 SP - 57 EP - 70 PB - Cambridge University Press CY - Cambridge AN - OPUS4-56350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yusenko, Kirill A1 - Emmerling, Franziska A1 - de Oliveira Guilherme Buzanich, Ana T1 - X-Ray absorption spectroscopy to study multicomponent materials N2 - Detailed study of multicomponent systems in solid-state as well as in solution using X-ray diffraction and X-ray spectroscopy is one of the most common topics in modern materials chemistry. 5-6 component high-entropy alloys such as fcc- and bcc-structured AlxCoCrFeNi and fluorescent nanoparticles based on fluorite-structured SrF2 doped by rare-earth metals in organic solutions have high complexity and their local structure cannot be resolved using only diffraction. X-ray absorption spectroscopy should be applied to understand peculiarities in their local structure and make a link between structure on short and long ranges and their macroscopic properties. Here, based on two representativee examples, we discuss how a combination of several X-ray absorption edges might give new insights into complex materials. T2 - Virtual meeting of the African Light Source CY - Online meeting DA - 15.11.2021 KW - EXAFS KW - Synchrotron studies PY - 2021 AN - OPUS4-54014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yusenko, Kirill A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin T1 - Studies of high-entropy alloys using x-ray absorption fine structure at the bamline N2 - BAM line is multipurpose high-energy beamline. To extend studies of multicomponent alloys using EXAFS we perform own research and user experiments requiring multiedge spectroscopy, high-temperature and chemically aggressive sample environments. Our study of multicomponent alloys and high-entropy alloys open new perspectives in understanding their reactivity, corrosion, phase transformations and local ordering. T2 - SPP2006: large scale facilities CY - Online meeting DA - 02.11.2021 KW - Synchrotron studies KW - High-entropy alloys KW - EXAFS PY - 2021 AN - OPUS4-54016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lutz, C. A1 - Hampel, S. A1 - Beuermann, S. A1 - Turek, T. A1 - Kunz, U. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Fittschen, U. E. A. T1 - Investigation on Vanadium Species Distribution in Nafion™ 117 after Cyclization in a Vanadium Redox Flow Battery N2 - The vanadium redox flow battery (VRFB) is currently a potential candidate for stationary energy storage. A major challenge is the unintended vanadium transport through the separator, which results in a fade of capacity. To overcome this issue, it is necessary to understand the transport processes in the membrane on a more fundamental level. In this work, the vanadium species distribution in Nafion™ 117 after cyclization was investigated. Two membranes, one from a charged VRFB and another from a discharged VRFB, were analyzed using ultraviolet–visible spectroscopy (UV/VIS) and X-ray absorption near edge structure spectroscopy (XANES). Little difference between the two membranes was recognizable according to the UV/VIS results. In comparison, the XANES results showed that the membrane from the charged VRFB contains more V3+ than VO2+, whereas for the discharged case, more VO2+ is present in the membrane. KW - Synchrotron KW - BAMline KW - XANES KW - Vanadium redox flow battery PY - 2021 VL - 64 SP - 1 EP - 8 AN - OPUS4-54144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - Hard X-ray spectroscopy and imaging at the BAMline and MySpot beamlines at BESSY II (Berlin, Germany) N2 - Overview of the X-ray based analytical methods conducted at the BAMline and µSpot Beamline for structure analysis. T2 - Pccr2 + AfLS conference CY - Accra, Ghana DA - 29.01.2019 KW - X-ray spectroscopy KW - Synchrotron KW - Beamline KW - Material characterization PY - 2019 AN - OPUS4-47319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - Career talk & lab tour - Working at BESSY II, a large scale research facility in Adlershof N2 - What exactly does a postdoc do at a research institute? What scientific questions does he or she want to address? What is their daily work routine? During our regular Lab Tours, female postdocs provide insight into their jobs. They also tell us about their career path: How did they get there? And what do they envision for their professional future? This time, Dr. Ana Guilherme Buzanich, a scientist from the Structure Analysis division at the Bundesanstalt für Materialforschung und -prüfung (BAM), will give an overview of her Research areas. She works at the electron storage ring BESSY-II where she conducts experiments at two hard X-ray beamlines (BAMline and µSpot). The tour includes a guided visit of the research facility. T2 - Lab Tour & Career Talk, WiNS CY - Berlin, Germany DA - 11.02.2019 KW - Women in STEM KW - X-ray Spectroscopy KW - Synchrotron KW - Beamline KW - Material characterization PY - 2019 AN - OPUS4-47418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -