TY - CONF A1 - Lozano, Daniel A1 - Bulling, Jannis A1 - Prager, Jens T1 - Quadtree decomposition as a meshing strategy for guided waves simulations using the scaled boundary finite element method N2 - Structural health monitoring techniques associate strongly with damage detection and characterization. Ultrasonic guided waves (UGW), for such scope, arise as one of the most promising methods for many reasons i.e. UGW are able to travel long distances and they have high sensitivity to damage. In this context, the necessity to model realistic wave-defect interaction occurs to be critical. Realistic damage scenarios can be modeled through the usage of image-based quadtree meshes. Images, such as the outcome from X-ray scans, C-scans, etc., can be converted into meshes for further integration in a computational domain. Quadtree meshes are created by converting the intensity of the pixels to quadrilateral cells. Homogeneous regions inside one image result in one quad, whereas fine features such as discontinuities can be described with smaller quads. This contribution proposes an efficient methodology to model wave defect interaction, using as a framework the scaled boundary finite element method (SBFEM) and quadtree meshes. Problems as non-conforming regions in the mesh due to the space tree decomposition can be easily avoided using SBFEM’s polygonal elements. Moreover, the semi-analytical nature of the SBFEM allows the modeling of arbitrarily long prismatic/undamaged regions of the waveguides without an increase in the computational burden. T2 - DAGA 2022 CY - Stuttgart, Germany DA - 21.03.2022 KW - Wave defect interaction KW - Scaled Boundary Finite Element Method KW - Quadtree meshes KW - Image-based models KW - Transient analysis PY - 2022 SP - 887 EP - 890 CY - Stuttgart AN - OPUS4-57153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lozano, Daniel A1 - Bulling, Jannis A1 - Prager, Jens T1 - Modeling guided waves interacting with arbitrarily shaped inhomogeneities using SBFEM in combination with an extruded quadtree decomposition for 3D plates N2 - For structural health monitoring systems or non-destructive testing, it is crucial to study the interactions of ultrasonic-guided waves with inhomogeneities or damage in structural components. Simulation of these interactions poses a challenge. After the wave-damage interaction, the numerical model must reproduce features like mode conversion or wave scattering. Mathematically, damages are discontinuities in a computational domain, and each wave interacts differently because of the geometrical features. We propose a quadtree-based meshing in the current contribution to capture these geometrical characteristics. This kind of discretisation approach requires special techniques to couple cells of different sizes since, after a quadtree decomposition, the problem of so-called hanging nodes may arise. Transition elements based on high-order transfinite shape functions are used to solve this issue. The advantage is that these elements allow the correct coupling of the cells while retaining a high-order interpolation. Moreover, the reuse of the dynamic stiffness matrices can be exploited based on the similarity of the cells. This procedure makes the approach very efficient. Examples show the scattering characteristics of different guided wave modes after interacting with inhomogeneities and discontinuities in a plate. T2 - DAGA 2023 CY - Hamburg, Germany DA - 06.03.2023 KW - SBFEM KW - Quadtree KW - Ultrasound PY - 2023 SP - 1035 EP - 1038 CY - Hamburg AN - OPUS4-59776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lozano, Daniel A1 - Bulling, Jannis A1 - Gravenkamp, Hauke A1 - Prager, Jens A1 - Birk, Carolin T1 - The SBFEM to simulate the scattering of ultrasonic guided waves interacting with defects in plate structures N2 - In the field of guided waves for non-destructive testing, the interaction of these waves with damages or other discontinuities in a structure is critical. When a guided wave mode travels and hits a defect, it scatters in all directions, converting to other modes and reflecting the existing one. These interactions are captured in scattered far field complex amplitudes. The amplitudes are stored in scattering matrices, which characterise the elastodynamic behaviour of a defect completely. Scattering matrices are also useful to simulate backpropagation from a defect using ray-tracing methods. Simulating these interactions is challenging, and analytical solutions only exist for simple geometries. Still, using general tools like the finite element method results in large, usually costly models. Recently, researchers proposed a method based on a numerical implementation of the Kirchhoff–Helmholtz integral that allows the computation of the scattering matrices using a model containing only the damaged region. However, classical methods to resolve the far field and low-order elements were used, leading to large models yet more efficient than using other techniques. We propose using the SBFEM as an alternative to enhance the computation of the far field scattering. The damaged region is discretised using high-order polyhedral elements, while the far field is constructed using a modified version of the SBFEM. Examples compared to the literature demonstrate the validity of the approach. T2 - Doktorandentreffen CY - Attendorn, Germany DA - 16.10.2023 KW - SBFEM KW - Guided Waves KW - Scattering PY - 2023 AN - OPUS4-59775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lozano, Daniel A1 - Bulling, Jannis A1 - Gravenkamp, Hauke A1 - Birk, Carolin T1 - Domain decoupling implementation for efficient ultrasonic wave simulations using scaled boundary finite elements and the mortar method JF - Computer Methods in Applied Mechanics and Engineering N2 - We introduce a novel approach that combines the scaled boundary finite element method (SBFEM) with a mortar coupling to enhance the computational modelling of elastic wave propagation and interaction with local features in the ultrasonic range. The key objective is to achieve decoupling between different regions of interest, enabling independent meshes for the zones where waves either propagate or interact with localised discontinuities in the elastic media. This decoupling allows us to exploit the benefits offered by various SBFEM formulations. Thus, we can select the most suitable solution for each specific region. An important concept we emphasise is the differentiation between the near field and far field regions. The near field encompasses zones where the precise representation of small features compared to the wavelength is crucial. At the same time, the far field comprises homogeneous regions where the waves propagate without interactions, eventually radiating towards infinity if the domain is unbounded. By separating these two zones, we can improve the computational performance by employing finer discretisation only where necessary. Furthermore, this decoupling enables the reuse of far field models in parametric analyses, making it highly valuable for scenarios focused particularly on local elastic wave interactions. This approach offers considerable potential in such cases. The modelling technique is validated, and its potential is demonstrated through practical applications. KW - Computer Science Applications KW - General Physics and Astronomy KW - Mechanical Engineering KW - Mechanics of Materials KW - Computational Mechanics PY - 2023 DO - https://doi.org/10.1016/j.cma.2023.116465 SN - 0045-7825 VL - 417 IS - Part A SP - 1 EP - 21 PB - Elsevier BV AN - OPUS4-58478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lozano, Daniel A1 - Bulling, Jannis A1 - Asokkumar, A. A1 - Gravenkamp, H. A1 - Birk, C. T1 - 3D simulations of ultrasonic waves in plates using the scaled boundary finite element method and high-order transition elements JF - Wave Motion N2 - It can be difficult to efficiently model ultrasonic waves in 3D structures, especially when the computational model needs to account for complex geometries. This contribution presents a solution based on the Scaled Boundary Finite Element Method (SBFEM). It is a numerical tool suitable for elastodynamic problems. A space-tree discretisation, namely quad-trees, is used. This technique allows the decomposition of an image into quadrilaterals or quads, which are extruded to generate the 3D plate geometry. In particular, small quads resolve regions with discontinuities, allowing them to represent fine details in the structure. Moreover, this meshing technique allows for exploiting cell similarities, making the calculation procedure more efficient. The space-tree discretisations are generated from a high-resolution image containing all the information about damaged regions or boundary conditions. The resulting SBFEM polyhedral domains employ transition elements to ensure correct coupling between cells of different sizes. The analytical solution of a cylindrical scatterer serves as a reference to validate the proposed approach. Other examples also demonstrate the validity of the methodology and its flexibility. KW - High-order transition elements KW - Image-based models KW - Wave propagation KW - Scaled boundary finite element method PY - 2023 DO - https://doi.org/10.1016/j.wavemoti.2023.103158 VL - 120 SP - 1 EP - 20 PB - Elsevier B.V. AN - OPUS4-57768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayoumi, A. A1 - Lozano, Daniel A1 - Bulling, Jannis A1 - Mueller, I. A1 - Prager, Jens T1 - Comparative Study Between Simulation and Experimental Guided Ultrasonic Wave Propagation on a Plate Like Structure T2 - Fortschritte der Akustik - DAGA 2023 N2 - In plate-like structures, ultrasonic waves propagate as Lamb waves. Their use is important for many applications from non-destructive testing to structural health monitoring. Efficient simulation tools contribute to a significant value add e.g. in designing systems for these applications. Under which conditions an acceptable accuracy of these models with affordable computational costs can be achieved is an open question. Many of these applications include the usage of a plane wavefront, simulated in 2D crossesctional models to reduce complexity. In this contribution, a comparative case study between simulations and experiments is presented. The aim is to verify and compare a 2D cross-sectional model with experimental data. The experimental setup for this case study consists of an aluminum plate. A rectangular piezoelectric transducer is mounted for guided wave excitation. A laser Doppler vibrometer (LDV) measures out-of-plane velocities on the plate. A 2D cross-sectional model based on the Scaled Boundary Finite Element Method (SBFEM) is used to simulate the wave propagation of the experimental setup. The first data points near the transducer are used to fit the excitation tractions of the model, while additional points further away from the source are used to validate the model. The comparison between the recorded measurements and the simulated velocities shows a high degree of compatibility. T2 - DAGA 2023 - 49. Jahrestagung für Akustik CY - Hamburg, Germany DA - 06.03.2023 KW - Scaled Boundary Finite Element Method KW - Guided Ultrasonic Wave KW - Laser Doppler Vibrometer PY - 2023 SN - 978-3-939296-21-8 SP - 88 EP - 91 AN - OPUS4-57354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -