TY - CONF A1 - Wasmer, Paul A1 - Bulling, Jannis A1 - Gravenkamp, H. A1 - Prager, Jens T1 - Acoustic-structure interaction in the Scaled Boundary Finite Element Method for primsatic geometries T2 - 8th GACM Colloquium on Computational Mechanics for Young Scientist from Academia and Industry - Proceedings N2 - Due to the short wavelength compared to the dimensions of the structure, the simulation of ultrasonic waves is still a challenging task. A numerical method well suited for this purpose is the semi-analytical Scaled Boundary Finite Element Method (SBFEM). When applying this method, only the boundary of a computational domain is discretized using finite elements, while the interior is described by an analytical ansatz. Hence, the number of degrees of freedom is reduced significantly compared to the classical Finite Element Method (FEM). In recent years, a particular formulation of the SBFEM for the simulation of ultrasonic guided waves was developed. The method constitutes an efficient algorithm for prismatic structures of arbitrary length, such as plates, pipes, or beams. Wave propagation phenomena in such structures can be modeled for isotropic and anisotropic inhomogeneous waveguides. Even though the method is an efficient tool for the simulation of guided waves in solid media, a reliable model for the simulation of acoustic wave propagation in fluids as well as acoustic-structure interaction in terms of SBFEM is still missing. In principle, the fluid can be described by a displacement-based formulation and thus be implemented in existing SBFEM algorithms for solid bodies. However, due to the discretization with classical finite elements, spurious modes occur, which cannot be separated from the physical modes straightforwardly. The spurious modes can be suppressed using a penalty parameter. Although very accurate results were achieved for some problems, this procedure has been proven unreliable for certain cases. For this reason, we propose a different approach in this contribution. We employ a pressure model to simulate the acoustic behavior of fluids. The implementation of the pressure model results in a higher effort due to the necessity of incorporating coupling terms, but it presents a stable alternative without spurious modes. The accuracy of the method is demonstrated in comparison with analytical solutions and results obtained using the FEM. T2 - GACM 2019 CY - Kassel, Germany DA - 28.08.2019 KW - Scaled Boundary Finite Element Method KW - Guided Waves KW - Ultrasound KW - Acoustic-Structure Interaction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-497364 UR - https://www.upress.uni-kassel.de/katalog/abstract.php?978-3-7376-5093-9 SN - 978-3-86219-5093-9 DO - https://doi.org/10.19211/KUP9783737650939 SP - 347 EP - 350 AN - OPUS4-49736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wasmer, Paul A1 - Krome, Fabian A1 - Bulling, Jannis A1 - Prager, Jens T1 - A fluid model for the simulation of fluid‐structure interaction in the Scaled Boundary Finite Element Method for prismatic structures JF - Proceedings in applied mathematics and mechanics : PAMM N2 - The Scaled Boundary Finite Element Method is known as an efficient method for the simulation of ultrasonic wave propagation. As to investigate acoustic wave behavior in case of fluid‐structure interaction, a fluid model is implemented in the SBFEM for prismatic structures. To omit coupling terms a displacement‐based formulation is used. Spurious modes, which occur in the solution, are suppressed using a penalty parameter. To verify this formulation dispersion curves obtained with Comsol Multiphysics are compared to results of SBFEM. The results of both methods are in very good agreement T2 - GAMM 2018 CY - Munich, Germany DA - 19.03.2018 KW - Scaled Boundary Finite Element Method KW - Penalty Parameter KW - Fluid-Structure Interaction KW - Guided Waves PY - 2018 DO - https://doi.org/10.1002/pamm.201800139 VL - 18 IS - 1 SP - e201800139 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-47063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lozano, Daniel A1 - Bulling, Jannis A1 - Gravenkamp, Hauke A1 - Prager, Jens A1 - Birk, Carolin T1 - The SBFEM to simulate the scattering of ultrasonic guided waves interacting with defects in plate structures N2 - In the field of guided waves for non-destructive testing, the interaction of these waves with damages or other discontinuities in a structure is critical. When a guided wave mode travels and hits a defect, it scatters in all directions, converting to other modes and reflecting the existing one. These interactions are captured in scattered far field complex amplitudes. The amplitudes are stored in scattering matrices, which characterise the elastodynamic behaviour of a defect completely. Scattering matrices are also useful to simulate backpropagation from a defect using ray-tracing methods. Simulating these interactions is challenging, and analytical solutions only exist for simple geometries. Still, using general tools like the finite element method results in large, usually costly models. Recently, researchers proposed a method based on a numerical implementation of the Kirchhoff–Helmholtz integral that allows the computation of the scattering matrices using a model containing only the damaged region. However, classical methods to resolve the far field and low-order elements were used, leading to large models yet more efficient than using other techniques. We propose using the SBFEM as an alternative to enhance the computation of the far field scattering. The damaged region is discretised using high-order polyhedral elements, while the far field is constructed using a modified version of the SBFEM. Examples compared to the literature demonstrate the validity of the approach. T2 - Doktorandentreffen CY - Attendorn, Germany DA - 16.10.2023 KW - SBFEM KW - Guided Waves KW - Scattering PY - 2023 AN - OPUS4-59775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -