TY - JOUR A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Hentschel, Manfred P. A1 - Onel, Yener A1 - Wolk, Thomas A1 - Staude, Andreas A1 - Ehrig, Karsten A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Evaluating porosity in cordierite diesel particulate filter materials, part 1 X-ray refraction JF - Journal of ceramic science and technology N2 - Bi-continuous porous ceramics for filtration applications possess a particularly complicated microstructure, with porosity and solid matter being intermingled. Mechanical, thermal, and filtration properties can only be precisely estimated if the morphology of both solid matter and porosity can be quantitatively determined. Using x-ray absorption and refraction, we quantitatively evaluate porosity and pore orientation in cordierite diesel particulate filter ceramics. Porosity values turn out to agree with mercury intrusion measurements, while pore orientation factors agree with published crystallographic texture data. KW - Porous ceramics KW - Pore orientation KW - X-ray refraction KW - Synchrotron KW - Interface PY - 2013 DO - https://doi.org/10.4416/JCST2013-00021 SN - 2190-9385 VL - 4 IS - 4 SP - 169 EP - 176 PB - Göller CY - Baden-Baden AN - OPUS4-29939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Serrano Munoz, Itziar A1 - Fernandez, R. A1 - Gonzalez-Doncel, G. A1 - Garces, G. T1 - A paradigm shift in the description of creep in metals can only occur through multi-scale imaging N2 - The description of creep in metals has reached a high level of complexity; fine details are revealed by all sorts of characterization techniques and different theoretical models. However, to date virtually no fully microstructure-driven quantitative description of the phenomenon is available. This has brought to interesting inconsistencies; the classic description of (secondary) creep rests on the so-called power law, which however: a- has a pre-factor spanning over 10 orders of magnitude; b- has different reported exponents for the same material; c- has no explanation for the values of such exponents. Recently, a novel description (the so-called Solid State Transformation Creep (SSTC) Model) has been proposed to tackle the problem under a different light. The model has two remarkable features: 1- it describes creep as the accumulation of elementary strains due to dislocation motion; 2- it predicates that creep is proceeding by the evolution of a fractal arrangement of dislocations. Such description, however, needs a great deal of corroborating evidence, and indeed, is still incomplete. To date, we have been able to observe and somehow quantify the fractal arrangement of microstructures through Transmission Electron Microscopy (TEM), observe the accumulation of dislocations at grain boundaries by EBSD-KAM (Electron Back-Scattered Diffraction-Kernel Angular Misorientation) analysis, quantify the kinetic character (solid state transformation) of experimental creep curves, and estimate the sub-grain size of the fractal microstructure through X-ray refraction techniques. All pieces of the mosaic seem to yield a consistent picture: we seem being on the right path to reconstruct the whole elephant by probing single parts of it. What is still missing is the bond between the various scales of investigation. T2 - Korrelative Materialcharakterisierung 2022 CY - Dresden, Germany DA - 13.10.2022 KW - X-ray refraction KW - EBSD KW - Alloys KW - TEM KW - SEM PY - 2022 AN - OPUS4-56163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Laquai, René A1 - Schaupp, Thomas A1 - Müller, Bernd R. A1 - Griesche, Axel A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - 3D imaging of hydrogen assisted cracking using analyser-based imaging N2 - To better understand the mechanism of hydrogen assisted cracking (HAC), it is important to investigate the 3D structure of the cracks non-destructively. Since, cracks introduced by HAC are usually very small, conventional x-ray imaging methods often lack the required spatial resolution. However, the detection of those cracks can be enhanced by taking advantage of refraction at interfaces within the sample. To image this refractive deflection we employ analyser based imaging (ABI). In this work we aim at proving the enhanced crack detection of ABI by investigating an alluminum alloy weld. T2 - BESSY User Meeting 2015 CY - Berlin, Germany DA - 09.12.2015 KW - X-ray refraction KW - Synchrotron KW - Analyser-based imaging KW - Hydrogen assisted cracking KW - Welding PY - 2015 AN - OPUS4-38278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Laquai, René A1 - Schaupp, Thomas A1 - Müller, Bernd R. A1 - Griesche, Axel A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - 3D imaging of hydrogen assisted cracking in metals using refraction enhanced synchrotron CT T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering (Proceedings) N2 - Hydrogen in metals can cause a degradation of the mechanical properties with possible subsequent hydrogen assisted cracking (HAC). Though, the mechanism of HAC is not completely understood yet and thus suitable methods for in situ investigations to characterise the crack formation are needed. X-ray computed tomography (CT) is a well-known tool for analysing these properties. However, the effective resolution of the detector system limits the detection of small defects by CT. Analyser based imaging (ABI) takes advantage of x-ray refraction at interfaces between volumes of different density, i.e. of cracks, pores, inclusions, etc., within the sample to detect defects smaller than the resolution of the detector system. In this study, measurements on an aluminium alloy weld showed that ABI allows us to resolve the 3D structure of cracks undetected by absorption based CT. Prospective investigations will analyse HAC in steels. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 2015-09-15 KW - Wasserstoffversprödung KW - Wasserstoffunterstützte Rissbildung KW - Röntgenrefraktion KW - CT KW - Hydrogen embrittlement (HE) KW - Hydrogen assisted cracking (HAC) KW - Aluminium alloy KW - X-ray refraction KW - Analyser based imaging KW - Computed tomography (CT) KW - Synchrotron radiation PY - 2015 SN - 1435-4934 SP - 1217 EP - 1224 AN - OPUS4-34287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Staude, Andreas A1 - Meinel, Dietmar A1 - Hentschel, Manfred P. A1 - Müller, Bernd R. ED - Grellmann, W. ED - Frenz, H. T1 - Moderne bildgebende hochauflösende Röntgenverfahren für die Materialcharakterisierung T2 - Tagung Werkstoffprüfung 2014 - Fortschritte in der Werkstoffprüfung für Forschung und Praxis - Werkstoffeinsatz, Qualitätssicherung und Schadensanalyse N2 - Die Computertomographie (CT) ist in der Medizin als Standardtechnik etabliert, in der zerstörungsfreien Prüfung wird sie zunehmend angewendet, in einzelnen Fällen sogar als Referenzverfahren eingesetzt. Gegenwärtig ist eine starke Zunahme von Anwendungen der CT in der Materialcharakterisierung zu verzeichnen. Zudem werden weitere moderne 3D-Techniken für werkstoffwissenschaftliche Fragestellungen genutzt, um die Mikrostruktur - auch in situ (z.B. Druck, Temperatur) - aufzuklären. Hier werden neben der konventionellen Absorptions-CT auch die Potenziale der Refraktions-CT zur Beantwortung prozesstechnischer sowie werkstofflicher Fragestellungen aufgezeigt, die ein „ganzheitliches Bild“ des jeweiligen Werkstoffs zum Ziel haben. T2 - Tagung Werkstoffprüfung 2014 - Fortschritte in der Werkstoffprüfung für Forschung und Praxis - Werkstoffeinsatz, Qualitätssicherung und Schadensanalyse CY - Berlin, Germany DA - 04.12.2014 KW - Computer tomography KW - X-ray refraction KW - Ceramics KW - Concrete KW - Inhomogeneous materials KW - Computertomographie KW - Röntgenrefraktion KW - Keramik KW - Beton KW - Mehrphasige Materialien PY - 2014 SN - 978-3-9814516-8-9 SN - 1861-8154 SP - 1 EP - 12 AN - OPUS4-32565 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Laquai, René A1 - Schaupp, Thomas A1 - Müller, Bernd R. A1 - Griesche, Axel A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - 3D Crack analysis in hydrogen charged lean duplex stainless steel with synchrotron refraction CT T2 - Proceeedings of the 19th World Conference on Non-Destructive Testing 2016 N2 - Hydrogen in metals can cause a degradation of the mechanical properties, the so-called hydrogen embrittlement. In combination with internal stresses, hydrogen assisted cracking (HAC) can occur. This phenomenon is not completely understood yet. To better characterise the cracking behaviour, it is important to gain information about the evolution of the 3D crack network. For this purpose samples of lean duplex stainless steel were loaded with hydrogen by means of electrochemical charging and investigated by means of synchrotron refraction CT and SEM fractography after uniaxial tensile loading. Synchrotron refraction CT is an analyser-based imaging (ABI) technique. It uses a Si (111) single crystal as analyser, which is placed into the beam path between sample and detector. According to Bragg’s law only incident x-rays within a narrow range around the Bragg-angle are diffracted from the analyser into the detector. Hence, the analyser acts as an angular filter for the transmitted beam. This filtering allows to turn the refraction and scattering of x-rays into image contrast. Refraction occurs at all interfaces, where the density of the material changes and is more sensitive to density changes than the attenuation. Therefore, it is possible to detect smaller cracks than with classical x-ray imaging techniques, like CT, with comparable spacial resolution. It also visualises the 3D structure of the cracks and gains quantitative information about their morphology and distribution. Since cracks introduced by HAC are usually very small and have a small opening displacement, synchrotron refraction CT is expected to be well suited for imaging this cracking mechanism and can be a valuable tool to characterise the formation and the evolution of a 3D crack network. T2 - WCNDT 2016 CY - München, Germany DA - 13.06.2016 KW - X-ray refraction KW - Computed tomography KW - Hydrogen assisted cracking KW - Duplex stainless steel PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-366481 SN - 978-3-940283-78-8 VL - BB 158 SP - Tu.4.B.3, 1 EP - 9 AN - OPUS4-36648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - 2D and 3D imaging chracterization techniques for porous ceramics N2 - The combination of microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on porous material properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of porosity in ceramics. Moreover, I will show how not-so-novel 2D characterization techniques, based X-ray refraction, can allow a great deal of insights in the damage evolution in microcracked (and porous) ceramics. I will show how X-ray refraction can detect objects (e.g. microcracks) below its own spatial resolution. Finally, I will discuss the link between the microstructural findings and the mechanical properties of porous microcracked ceramics. T2 - CIMTEC 2018 CY - Perugia, Italy DA - 04.06.2018 KW - Orientation KW - Cordierite KW - Beta-eucrytite KW - Porosity KW - Microcracking KW - Computed tomography KW - X-ray refraction PY - 2018 AN - OPUS4-45119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Chen, C. A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Onel, Yener A1 - Staude, A. A1 - Prinz, Carsten A1 - Stroh, Julia A1 - Feldmann, Ines T1 - Orientation of pore space in diesel particulate filter materials N2 - Porous ceramic diesel particulate filters (DPFs) are extruded products that possess macroscopic anisotropic mechanical and thermal properties. This anisotropy is caused by both morphologic features (mostly the orientation of porosity) and crystallographic texture. We systematically studied those two aspects in a cordierite and two aluminum titanate (AT) ceramic materials of different porosity using mercury porosimetry, gas adsorption, electron microscopy, X-ray diffraction, and X-ray refraction radiography. We found that a lower porosity in AT content implies a larger isotropy of both the crystal texture and the porous space orientation. We also found that, analogous to cordierite, AT crystallites do align with their axis of negative thermal expansion along the extrusion direction. However, unlike what found for cordierite, the aluminium titanate crystallite form is such that a more pronounced (0 0 2) texture along the extrusion direction implies porosity aligned perpendicular to it. T2 - 6th Cellular Materials CellMAT 2020 CY - Online meeting DA - 07.10.2020 KW - Microstructure-property relations KW - Preferred orientation KW - X-ray refraction KW - Pore orientation KW - Crystal structure KW - Extrusion PY - 2020 AN - OPUS4-51451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Absorption and refraction tomography: Characterization and non-destructive testing of micro-structured materials N2 - The combination of tomographic, microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on material and component properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. This logic thread equally holds for industrial and academic research, and valorizes expensive experiments such as those carried out at synchrotron sources, which cannot be daily repeated. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of damage evolution and microstructural properties, as well as for non-destructive testing. Examples of micro-structured inhomogeneous materials will be given, such as Composites, Ceramics, Concrete, and Additively manufactured parts. I will also show how X-ray refraction computed tomography (CT) can be highly complementary to classic absorption CT, being sensitive to internal interfaces. Additionally, I will present a new technique in our portfolio, Neutron Diffraction, which is extremely well suited to the study of internal stresses, both residual and under external load. T2 - Kolloquium ICMCB Bordeaux CY - Bordeaux, France DA - 13.07.2017 KW - Computed tomography KW - X-ray refraction KW - Neutron diffraction KW - Additive manufacturing KW - Ceramics KW - Composites KW - BAM PY - 2017 AN - OPUS4-41041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Kupsch, Andreas A1 - Mueller, Bernd R. A1 - Lange, Axel T1 - X-ray refraction 2D and 3D techniques N2 - X-ray refraction techniques represent a very promising, yet not so wide-spread, set of X-ray techniques based on refraction effects. They allow determining internal specific surface (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with nanometric detectability. While they are limited by the X-ray absorption of the material under investigation, we demonstrate showcases of ceramics and composite materials, where understanding of microstructural features could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. T2 - ICTMS 2017 CY - Lund, Sweden DA - 26.06.2017 KW - X-ray refraction KW - Composites KW - Damage KW - Cracks KW - Cearmics PY - 2017 AN - OPUS4-41042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -