TY - JOUR A1 - Brown, A. S. A1 - Milton, M. J. T. A1 - Cowper, C. J. A1 - Squire, G. D. A1 - Bremser, Wolfram A1 - Branch, R. W. T1 - Analysis of natural gas by gas chromatography Reduction of correlated uncertainties by normalisation N2 - The results of gas chromatographic analysis of natural gas mixtures reveal strong correlations (Pearson correlation coefficient of >0.96) between the uncertainty of each component and variations in the ambient pressure. Although correction for ambient pressure variations can reduce this variability, normalisation of the results of each analysis using the assumption that the sum of all component amount fractions is unity provides significantly greater reductions in the uncertainty of each measured component. We show that the uncertainty in normalised components can be estimated approximately using the correlation coefficient as a measure of the correlation present in the measurements, or exactly using a full calculation of the variance/covariance (V/C) structure of the data. KW - Uncertainty KW - Normalisation KW - Variance KW - Covariance KW - Natural gas KW - Gases KW - Alkanes PY - 2004 DO - https://doi.org/10.1016/j.chroma.2004.04.007 SN - 0021-9673 VL - 1040 IS - 2 SP - 215 EP - 225 PB - Elsevier CY - Amsterdam AN - OPUS4-3732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Culleton, L.P. A1 - Brown, A. A1 - Murugan, A. A1 - Van der Veen, A. A1 - Van Osselen, D. A1 - Ziel, P. R. A1 - Li, J. A1 - Tuma, Dirk A1 - Schulz, Gert A1 - Näther, Stephanie A1 - Arrhenius, K. A1 - Kühnemuth, D. A1 - Beránek, J. A1 - Fuko, J. A1 - Val'ková, M. T1 - Results of an international comparison on the analysis of real nonconventional energy gases N2 - The requirement for a metrological infrastructure to ensure the interchangability of 'nonconventional’ energy gases within existing European infrastructure1 was the driving force behind the work undertaken in the three-year EMRP Characterisation of energy gases project EMRP ENG01 (June 2010 - May 2013). As part of work package one of the project, Standards and methods were used to perform composition and impurity measurements on samples of real energy gases collected from around Europe. The aim of this study was to compare the results obtained from different labs, and thereby provide an evaluation of the labs’ capabilities and provide insight into the feasibility of different analytical methodologies for use with future measurements. KW - Energy gases KW - Real samples KW - Sampling KW - Analysis PY - 2013 SN - 1754-2928 IS - July SP - 1 EP - 28 PB - Queen's Printer and Controller of HMSO CY - Teddington, Middlesex, UK AN - OPUS4-29449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nieuwenkamp, G. A1 - Wessel, R. M. A1 - van der Veen, A.M.H. A1 - Ziel, P. R. A1 - Han, Q. A1 - Tuma, Dirk A1 - Woo, J.-C. A1 - Fuko, J.T. A1 - Szilágyi, N. A1 - Büki, T. A1 - Konopelko, L. A1 - Kustikov, Y.A. A1 - Popova, T.A. A1 - Pankratov, V.V. A1 - Pir, M.N. A1 - Nazarov, E.V. A1 - Ehvalov, L.V. A1 - Timofeev, A.U. A1 - Kuzmina, T.A. A1 - Meshkov, A.V. A1 - Valková, M. A1 - Pätoprsty, V. A1 - Downey, M. A1 - Vargha, G. A1 - Brown, A. A1 - Milton, M. T1 - International comparison CCQM-K77: Refinery gas N2 - Refinery gas is a complex mixture of hydrocarbons and non-combustible gases (e.g., carbon monoxide, carbon dioxide, nitrogen, helium). It is obtained as part of the refining and conversion of crude oil. This key comparison aims to evaluate the measurement capabilities for these types of mixtures. The results of the key comparison indicate that the analysis of a refinery-type gas mixture is for some laboratories a challenge. Overall, four laboratories (VSL, NIM, NPL and VNIIM) have satisfactory results. The results of some participants highlight some non-trivial issues, such as appropriate separation between saturated and unsaturated hydrocarbons, and issues with the measurement of nitrogen, hydrogen and helium. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA). DatesIssue 1A (Technical Supplement 2012) KW - Ringversuch KW - Raffineriegas KW - Chromatographische Analyse PY - 2012 DO - https://doi.org/10.1088/0026-1394/49/1A/08003 SN - 0026-1394 SN - 1681-7575 VL - 49 IS - 08003 SP - 1 EP - 71 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-25931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haloua, F. A1 - Foulon, E. A1 - El-Harti, E. A1 - Sarge, S. M. A1 - Rauch, J. A1 - Neagu, M. A1 - Brown, A. S. A1 - Tuma, Dirk T1 - Comparison of traceable methods for determining the calorific value of non-conventional fuel gases N2 - Energy-content measurements by direct methods (such as calorimetry) are used to validate the indirect method (from gas composition obtained by gas chromatography) which is generally adopted by grid operators for on-site gas control. A primary reference gas calorimeter and three field calorimeters were used for the first time to measure accurately the energy content of non-conventional gases (biogas and coal mine methane). The gas mixtures for this study were prepared by gravimetry and comprised three binary mixtures containing carbon dioxide and (up to 80 mol-%) methane, three ternary mixtures containing carbon dioxide, (up to 70 mol-%) methane and (up to 0.3 mol-%) hydrogen sulphide as well as a ten-component mixture with a methane content of approximately 64 mol-% which represents a typical coal mine methane. Associated uncertainty calculations were developed for each instrument and are presented here. Traceability of the measurements to the SI units is ensured in reference calorimetry, as calibration is accomplished by electrical simulation based on the Joule effect in order to obtain the heat capacity of the entire system. The results obtained with the four calorimeters are compared with each other and also with results calculated from the indirect method that is based on gas chromatography. Uncertainties (k = 2) between 0.07 and 0.49% for the reference gases were obtained with the reference calorimeter, while uncertainties for the field calorimeters range between 0.18 and 2.48% for the same mixtures. Compared to the usual standard deviation observed by gas chromatography for a multicomponent gas mixture of about 1%, it is demonstrated that the calorimetric method, although rarely used for non-conventional gases before, is appropriate for energy-content measurements of gases originating from renewable energy sources. KW - Non-conventional fuel gases KW - Gas calorimetry KW - Biogas KW - Calorific value PY - 2016 DO - https://doi.org/10.1016/j.ijthermalsci.2015.10.020 SN - 1290-0729 VL - 100 SP - 438 EP - 447 PB - Elsevier Masson SAS CY - Issy-les-Moulineaux AN - OPUS4-35766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brown, A. S. T1 - Traceable standards and methods for the analysis of non-conventional energy gases N2 - Declining European natural gas resources and increasing legislation mean that diversification towards ‘non-conventional gases’ is essential. Accurate and traceable measurements of the composition of non- conventional gases are required to ensure gases can be transported in existing pipeline networks, and used with existing appliances. The EMRP ‘Characterisation of energy gases’ project is successfully developing a metrology infrastructure to underpin these measurements. New standards and methods have been developed for biogas composition, biogas impurities, coal mine gases, refinery gases and environmentally-friendly odorants. The project is set to conclude in 2013 with the challenging analysis of a series of real non-conventional gas samples. T2 - 28th Meeting of the CCQM Gas Analysis Working Group (GAWG) CY - Saint Petersburg, Russian Federation DA - 24.10.2012 KW - metrology KW - traceable standards KW - energy gases PY - 2012 AN - OPUS4-35946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alder-Rangel, A. A1 - Idnurm, A. A1 - Brand, A. A1 - Brown, A. A1 - Gorbushina, Anna A1 - Kelliher, C. A1 - Campos, C. A1 - Levin, D. A1 - Bell-Pedersen, D. A1 - Dadachova, E. A1 - Bauer, F. A1 - Gadd, G. A1 - Braus, G. A1 - Braga, G. A1 - Brancini, G. A1 - Walker, G. A1 - Druzhinina, I. A1 - Pocsi, I. A1 - Dijksterhuis, J. A1 - Aguirre, J. A1 - Hallsworth, J. A1 - Schumacher, Julia A1 - Ho Wong, K. A1 - Selbmann, L. A1 - Corrochano, L. A1 - Kupiec, M. A1 - Momany, M. A1 - Molin, M. A1 - Requena, N. A1 - Yarden, O. A1 - Cordero, R. A1 - Fischer, R. A1 - Pascon, R. A1 - Mancinelli, R. A1 - Emri, T. A1 - Basso, T. A1 - Rangel, D. T1 - The Third International Symposium on Fungal Stress - ISFUS N2 - Stress is a normal part of life for fungi, which can survive in environments considered inhospitable or hostile for other organisms. Due to the ability of fungi to respond to, survive in, and transform the environment, even under severe stresses, many researchers are exploring the mechanisms that enable fungi to adapt to stress. The International Symposium on Fungal Stress (ISFUS) brings together leading scientists from around the world who research fungal stress. This article discusses presentations given at the third ISFUS, held in Sao Jose dos Campos, Sao Paulo, Brazil in 2019, thereby summarizing the state-of-the-art knowledge on fungal stress, a field that includes microbiology, agriculture, ecology, biotechnology, medicine, and astrobiology. T2 - International Symposium on Fungal Stress (ISFUS) CY - Sao Jose dos Campos, Brazil DA - 20.05.2019 KW - Agricultural mycology KW - Fungal stress mechanisms and responses KW - Industrial mycology KW - Medical mycology PY - 2020 DO - https://doi.org/10.1016/j.funbio.2020.02.007 VL - 124 IS - 5 SP - 235 EP - 252 PB - Elsevier Ltd. AN - OPUS4-50953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -