TY - CONF A1 - Bresch, Sophie T1 - Oxidkeramische Werkstoffe und Folien für thermoelektrische Multilayergeneratoren N2 - Thermoelektrische Effekte beschreiben die direkte Verknüpfung von thermischer Energie und elektrischer Energie in Festkörpern. Durch Thermodiffusionsströme entsteht direkt, ohne beweg¬liche Teile, ein elektrisches Feld als Folge einer Temperaturdifferenz. Diese Material-eigenschaft wird durch den Seebeckkoeffizienten beschrieben. Je nach Art der Ladungs¬träger sind die indu¬zierte Spannung und der Seebeckkoeffizient positiv (p-Typ) oder negativ (n-Typ). Thermo¬elek¬trische Effekte lassen sich beispielsweise in Thermo¬elementen zur Temperatur-messung, in Pel¬tierelementen zum Kühlen oder Heizen und in thermo¬elektrischen Generatoren zur Umwandlung von thermischer Energie in elektrische Energie nutzen. In thermoelektrischen Generatoren werden Schenkel aus p-Typ- und n-Typ-Materialien elek-trisch in Reihe und thermisch parallel verschaltet. Konventionell werden einzelne Schenkel aus Bismut¬tellurid auf ein metallisiertes Substrat gelötet. Man spricht vom π-Typ-Design. Aufgrund auf¬wendiger Fertigung und nicht optimaler Flächennutzung stellt dieses Design nicht die best-mög¬liche Lösung dar. Neben Telluriden gibt es noch andere vielversprechende thermoelektrische Material¬systeme wie die oxidischen Thermoelektrika. Im Temperatur¬bereich oberhalb von 700 °C können oxidische thermoelektrische Materialien mit nichtoxidischen konkurrieren. Zudem sind sie oxidationsbeständig und können aus weniger toxischen und besser verfügbaren Rohstoffen her¬ge¬stellt werden. Da es sich um keramische Materialien handelt, können unter Nutzung der Multi¬layer¬technologie (auch Vielschicht- oder Mehrlagentechnik) Generatoren im Multilayer¬design hergestellt werden. Keramische Multi¬layer¬generatoren sind aufgrund der höheren Leis¬tungs¬dichte, der Möglichkeit der gezielten Texturierung und des hohen möglichen Auto¬mati¬sierungs¬grades des Herstellungs¬prozesses eine viel¬versprechende Alternative zu konven¬tionellen π-Typ-Generatoren. Alle Lagen werden in einem Schritt co-gesintert. Die beiden zum jetzigen Zeit¬punkt wohl viel¬versprechendsten oxi¬dischen Thermoelektrika sind Calcium-cobaltit Ca3Co4O9 als p-Typ und Calciummanganat CaMnO3 als n-Typ. Die Sinter¬tem¬peratur von Ca3Co4O9 ist durch eine Phasenumwandlung bei 926 °C beschränkt. Texturiertes, dichtes Ca3Co4O9 mit einer hohen Festigkeit kann nur über Hei߬pressen hergestellt werden. Das Co-Sintern von Ca3Co4O9 und CaMnO3 war wegen der Tem¬pera¬tur¬differenz von 350 K zwischen den jeweiligen Sinterintervallen bisher nicht möglich. Ziel dieser Arbeit war deshalb die Ent¬wick¬lung von kompatiblen oxidkeramischen Werkstoffen und Folien für thermoelektrische Multilayer-generatoren auf der Basis von Ca3Co4O9 und CaMnO3. Daraus resultieren vier wesentliche Arbeitspakete. Zunächst die Materialentwicklungen von Ca3Co4O9 (p-Typ) und CaMnO3 (n-Typ) für ein Co-Sintern bei 900 °C mit akzeptablen thermoelek¬trischen Eigenschaften, dann die Entwicklung der weiteren im Generator benötigten Kompo¬nenten wie der Isolationsschicht und abschließend die Fertigung und Bewertung von Demonstra¬toren im Multi¬layer¬design. Foliengießen und druckunterstütztes Sintern ermöglichen die Herstellung von dichtem, tex-turier¬tem Ca3Co4O9 mit hoher Festigkeit und hohem Leistungsfaktor. Letzterer ist das Produkt der elek¬trischen Leitfähigkeit und dem Quadrat des Seebeckkoeffizienten. Für die elektrische Leit¬fähigkeit zeigte sich in dieser Arbeit ein kombinierter Einfluss von Sinterdichte und Textur. Die thermo¬elektrischen Eigen¬schaften lassen sich somit über die Einstellung der Mikrostruktur gezielt steuern. Durch die Optimierung der Pulversynthese, die Einführung des Sinteradditives CuO und die Kombi¬nation mit dem druckunterstützten Sintern (7,5 MPa) konnte die Sintertemperatur des CaMnO3 bei gleichbleibendem Leistungsfaktor von 1250 °C auf 950 °C gesenkt werden. Druck-unter¬stütztes Sintern von CaMnO3 ist bei 900 °C möglich, führt aber zu einem Werkstoff mit geringerem Leistungsfaktor, geringerer Dichte und ungenügender Festigkeit. Zur elektrischen Isolation der beiden thermoelektrischen Materialien wurde ein Glas-Keramik-Kompo¬sit mit hohem Volumenwiderstand und angepasstem Wärmeausdehnungs¬koef¬fizienten ent¬wickelt. Aus den zu Folien vergossenen thermoelektrischen Materialien, der siebgedruckten Iso¬lations-schicht und der siebgedruckten Metallisierung wurden mittels Multilayertech¬nologie De¬mons-tratoren hergestellt. Neben dem pn-Generator aus Ca3Co4O9 und CaMnO3 wurden auch Unileg-generatoren aus Ca3Co4O9 gefertigt. Bei Unileggeneratoren wird die Komplexität des Aufbaus durch die Verwendung von nur einem thermoelektrischen Material verringert. Die Simulation der Demonstratoren zeigte, dass der pn-Generator aus Ca3Co4O9 und CaMnO3 keine höheren Leis-tungsdichten erbringt als der aus nur Ca3Co4O9 bestehende Unileg¬generator. Auf¬grund des ge-ringen Leistungsfaktors und der geringen Festigkeit des bei 900 °C gesinterten CaMnO3 er¬scheint die Fertigung von pn-Multilayer¬generatoren aus Ca3Co4O9 und CaMnO3 derzeit nicht sinn¬voll. Die Unileg¬generatoren aus Ca3Co4O9 erreichen mit sehr hoher Reproduzier¬barkeit 2 mW/cm² bei einer Temperaturdifferenz von 230 K, dies entspricht 80 % der simulierten elektrischen Leistung. Es handelt sich hierbei um den ersten Machbarkeits¬nachweis zur Herstellung von Multilayer-generatoren auf Basis von texturiertem Ca3Co4O9 mit hohem thermoelektrischem Leistungsfaktor, hoher Dichte und hoher Festigkeit. Solch thermoelektrische Multilayergeneratoren könnten zukünftig Systeme mit geringen elek-trischen Leistungsanforderungen wie Sensoren autark und nachhaltig mit elektrischer Energie ver¬sorgen. T2 - Promotionskolloquium CY - Bayreuth, Germany DA - 25.04.2022 KW - Calciumcobaltit KW - Calciummanganat KW - Foliengießen KW - Sintertemperatur PY - 2022 AN - OPUS4-54726 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Entwicklung thermoelektrischer Multilayergeneratoren auf der Basis von Calciumcobaltit N2 - Thermoelectric generators can be used as energy harvesters for sensor applications. Multilayer thermoelectric generators (ML-TEGs) are a promising alternative to conventional π-type generators due to their high filling factor, high capability of automated production and the texturing potential during the production process. Calcium cobaltite is a promising thermoelectric oxide (p-type) with highly anisotropic properties. The following study shows the development of a textured unileg ML-TEG using ceramic multilayer technology. Tape-casting and pressure assisted sintering are applied to fabricate textured calcium cobaltite. Compared to conventional sintering, pressure assisted sintering increases the strength by the factor 10. Thermoelectric properties can be tuned either towards maximum power factor or towards maximum figure of merit depending on the pressure level. As electrical insulation material, a screen-printable glass-ceramic with high resistivity and adapted coefficient of thermal expansion is developed. From various commercial pastes a metallization with low contact resistance is chosen. The unileg ML-TEG is co-fired in one single step. The demonstrators reach 80% of the simulated output power and the power output is highly reproducible between the different demonstrators (99%). These results provide the first proof-of-concept for fabricating co-fired multilayer generators based on textured calcium cobaltite with high power factor, high density, and high strength. N2 - Thermoelektrische Generatoren können zum „Energy harvesting“ für den autarken Betrieb von bspw. Sensoren eingesetzt werden. Eine interessante Alternative zu den herkömmlichen π-Typ Generatoren sind auf Grund der höheren Leistungsdichte und der guten Automatisierbarkeit thermoelektrische Multilayergeneratoren. Calciumcobaltit ist ein vielsprechendes oxidisches Thermoelektrika (p-Typ) mit stark anisotropen Eigenschaften. Die hier vorgestellte Studie zeigt die Entwicklung von texturierten Unileg-Multilayer-Generatoren mittels keramischer Multilayertechnologie. Calciumcobaltit wird durch Foliengießen und druckunterstützte Sinterung texturiert. Im Vergleich zur konventionellen Sinterung verbessert sich die Festigkeit um den Faktor 10. Die thermoelektrischen Eigenschaften können je nach verwendetem Druckniveau hinsichtlich maximalem Power Factor oder hinsichtlich maximalem Gütefaktor optimiert werden. Ein Glaskeramikkomposit wird als Isolationsmaterial mit hohem Volumenwiderstand und angepasstem Wärmeausdehnungskoeffizienten entwickelt. Der Unileg-Multilayer-Generator wird in einem Schritt co-gesintert. Die hergestellten Demonstratoren erreichen 80% der simulierten Output-Leistung. Diese Ergebnisse stellen den ersten Machbarkeitsnachweis für die Herstellung von co-gesinterten Multilayer-Generatoren aus texturiertem Calciumcobaltit mit hohem Power Factor und hoher Festigkeit dar. T2 - Seminar des Lehrstuhls für Funktionsmaterialien, Universität Bayreuth CY - Online meeting DA - 18.06.2021 KW - Thermoelektrischer Generator KW - Multilayertechnik KW - Energy harvesting PY - 2021 AN - OPUS4-52834 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Entwicklung oxidkeramischer Werkstoffe und Folien für thermoelektrische Multilayergeneratoren N2 - Calcium cobaltite is a promising oxide thermoelectric materials for applications between 600 °C and 900 °C in air to convert waste heat directly into electrical power. The solid-state reaction, well known for large scale powder synthesis of functional materials, is used for the production of thermoelectric oxides. As a high temperature process, the powder synthesis consumes a lot of energy. In different studies, different synthesis conditions were used for the preparation of calcium cobaltite. To the author’s knowledge, a systematic study of the synthesis conditions of calcium cobaltite and calcium manganate has not yet been published. Therefore, the synthesis conditions for calcium cobaltite (temperature, dwell time, and particle size of raw materials) were studied with a statistical design of experiments (2³) and investigated regarding phase composition (XRD), densification, and thermoelectric properties. This study showed that a higher energy input (elevated temperatures, longer dwell times, or repeated calcinations) during powder synthesis does not improve but deteriorate the thermoelectric properties of calcium cobaltite. The same correlation was determined for the shrinkage. As a higher energy input during powder synthesis leads to a larger grain size and therefore to a reduced sinter activity the shrinkage at a given sinter profile is minimize as well as the thermoelectric properties. These results can be used to minimize the energy demand for the powder synthesis of oxide thermoelectric materials. In addition an increase of power factor by factor 10 can be achieved by applying pressure assisted sintering. T2 - Funktionsmaterialien - Lehrstuhlseminar CY - Bayreuth, Germany DA - 18.11.2016 KW - Thermoelectrics KW - Solid-state-reaction KW - Calcium cobaltite PY - 2016 AN - OPUS4-38375 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Einfluss der Pulversynthese auf die Eigenschaften thermoelektrischer Oxide N2 - Calciumcobaltit und Calciummanganat gehören zu den vielversprechendsten thermoelektrischen Oxiden im Temperaturbereich zwischen 600 °C und 800 °C an Luft. Mittels thermoelektrischer Generatoren kann ein Temperaturgradient direkt in elektrische Leistung umgewandelt werden. Für die kostengünstige Pulverherstellung von Funktionsmaterialien wird im industriellen Maßstab meist die Festphasenreaktion (bzw. Kalzinierung) verwendet. Da es sich dabei um einen Hochtemperaturprozess handelt, ist diese Kalzinierung sehr energieintensiv. In der Literatur werden sehr unterschiedliche Prozessbedingungen zur Pulversynthese thermoelektrischer Oxide genutzt. Soweit dem Autor bekannt, ist keine systematische Untersuchung des Einflusses der Pulversynthesebedingungen auf die thermoelektrischen Eigenschaften publiziert. Deshalb wurde eine systematische Untersuchung des Einflusses der Pulversynthesebedingungen (Temperatur, Haltezeit, Partikelgröße, Wiederholungen) auf die thermoelektrischen Eigenschaften von Calciumcobaltit und Calciummanganat durchgeführt. Es konnte gezeigt werden, dass sich ein höherer Energieeintrag während der Kalzinierung negativ auf die thermoelektrischen Eigenschaften auswirkt. T2 - Seminar des Lehrstuhls für Funktionsmaterialien CY - Universität Bayreuth, Bayreuth, Germany DA - 12.01.2018 KW - Kalzinierung KW - Thermoelektrika KW - Calciummanganat KW - Calciumcobaltit PY - 2018 AN - OPUS4-43772 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Druckunterstützte Sinterung von Calciumcobaltitfolien N2 - Calcium cobaltite Ca3Co4O9 is a promising p-type oxide thermoelectric material for applications between 600 °C and 900 °C in air. The properties and the morphology of Ca3Co4O9 are strongly anisotropic because of its layered crystal structure. By aligning the plate-like grains, the anisotropic properties can be assigned to the component. Hot-pressing of tablets is a well-known technology for grain alignment of Ca3Co4O9 and increases the thermoelectric properties in a/b-direction remarkably [1-3]. However, hot-pressing of tablets is limited by the tablet size. An interesting alternative for larger components is the pressure assisted sintering of panels from tape casted layers. Tape casting already leads to grain orientation during green body forming. By combining tape casting and pressure assisted sintering (50 kN maximum force) of Ca3Co4O9, high densities and high thermoelectric properties can be reached for large components up to 200 mm edge length. The morphology of Ca3Co4O9-grains can be designed by doping as well as by varying the powder synthesis conditions. For example Bi-doping increases the anisotropy of the grains, and reaction sintering of uncalcined powder leads to a fine grained microstructure and increases the electrical conductivity for pressure-less sintered specimens. Doped and undoped Ca3Co4O9 powders were successfully tape cast with the doctor blade technique. Several layers of tape were stacked and laminated to 7 cm x 7 cm panels. These panels were sintered in a LTCC sintering press with combined in-situ shrinkage measurement. Pressure-less sintered panels from undoped powder have a 2.5 times higher electrical conductivity at room temperature than dry-pressed test bars with randomly orientated particles. By applying a uniaxial pressure of 10 MPa during sintering, the electrical conductivity (σ25°C=15000 S/m) increases by the factor of 6 compared to the pressure-less sintered panels, which is in good accordance to the values reported in literature for conventional hot pressing [1, 3]. It is not possible to assign the increased anisotropy of Ca2.7Bi0.3Co4O9 to the pressure-assisted sintered panels, as Bi leads to an abnormal grain growth (up to 500 µm) with randomly oriented grains. This decreases the electrical conductivity (σ25°C=5000 S/m). Such an abnormal grain-growth is reported for Bi over-doped Ca3Co4O9 [4] but not because of hot-pressing. N2 - Calciumcobaltit ist eines der vielversprechendsten thermoelektrischen Oxide, welche zur direkten Wärmerückgewinnung genutzt werden können. Calciumcobaltit weist sowohl eine anisotrope Partikelform als auch anisotrope thermoelektrische Eigenschaften auf. Durch gezielte Ausrichtung der Partikel mittels Foliengießens und druckunterstützter Sinterung kann diese Anisotropie gezielt auf ein Bauteil übertragen werden. Die Partikelmorphologie kann durch Dotierung und Kalzinierung beeinflusst werden. Verschiedene Calciumcobaltitpulver wurden druckgesintert und das Gefüge sowie die thermoelektrischen Eigenschaften untersucht. Die Dotierung mit Bismut führte zu einer Verschlechterung der elektrischen Leitfähigkeit bei druckgesinterten Proben im Gegensatz zu undotierten Pulvern. T2 - Funktionsmaterialien - Lehrstuhlseminar CY - Bayreuth, Germany DA - 02.06.2017 KW - Thermoelectrics KW - Calcium cobaltite KW - Pressure assisted sintering KW - Druckunterstützte Sinterung KW - Calciumcobaltit KW - Thermoelektrika PY - 2017 AN - OPUS4-40467 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Schönauer-Kamin, D. A1 - Moos, R. A1 - Reimann, T. A1 - Giovannelli, F. A1 - Rabe, Torsten T1 - Influence of pressure and dwell time on pressure‐assisted sintering of calcium cobaltite N2 - Calcium cobaltite Ca3Co4O9, abbreviated Co349, is a promising thermoelectric material for high‐temperature applications in air. Its anisotropic properties can be assigned to polycrystalline parts by texturing. Tape casting and pressure‐assisted sintering (PAS) are a possible future way for a cost‐effective mass‐production of thermoelectric generators. This study examines the influence of pressure and dwell time during PAS at 900°C of tape‐cast Co349 on texture and thermoelectric properties. Tape casting aligns lentoid Co349. PAS results in a textured Co349 microstructure with the thermoelectrically favorable ab‐direction perpendicular to the pressing direction. By pressure variation during sintering, the microstructure of Co349 can be tailored either toward a maximum figure of merit as required for energy harvesting or toward a maximum power factor as required for energy harvesting. Moderate pressure of 2.5 MPa results in 25% porosity and a textured microstructure with a figure of merit of 0.13 at 700°C, two times higher than the dry‐pressed, pressureless‐sintered reference. A pressure of 7.5 MPa leads to 94% density and a high power factor of 326 µW/mK2 at 800°C, which is 11 times higher than the dry‐pressed reference (30 MPa) from the same powder. KW - Hot pressing KW - Texture KW - Thermoelectric properties PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515973 DO - https://doi.org/https://doi.org/10.1111/jace.17541 SN - 0002-7820 VL - 104 IS - 2 SP - 917 EP - 927 PB - Wiley Periodicals LLC AN - OPUS4-51597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Mrkwitschka, Paul A1 - Moos, R. A1 - Rabe, Torsten T1 - Glass-ceramic composites as insulation material for thermoelectric oxide multilayer generators N2 - Thermoelectric generators can be used as energy harvesters for sensor applications. Adapting the ceramic multilayer technology, their production can be highly automated. In such multilayer thermoelectric generators, the electrical insulation material, which separates the thermoelectric legs, is crucial for the performance of the device. The insulationmaterial should be adapted to the thermoelectric regarding its averaged coefficient of thermal expansion α and its sintering temperature while maintaining a high resistivity. In this study, starting from theoretical calculations, a glass-ceramic Composite material adapted for multilayer generators fromcalciummanganate and Calcium cobaltite is developed. The material is optimized towards an α of 11 × 10−6 K−1 (20–500◦C), a sintering temperature of 900◦C, and a high resistivity up to 800◦C. Calculated and measured α are in good agreement. The chosen glass-ceramic composite with 45 vol.% quartz has a resistivity of 1 × 107 Ωcm and an open porosity of <3%. Sintered multilayer samples from tape-cast thermoelectric oxides and screen-printed insulation show only small reaction layers. It can be concluded that glass-ceramic composites are a well-suited material class for insulation layers as their physical properties can be tuned by varying glass composition or dispersion phases. KW - Electrical insulators KW - Glass-ceramics KW - Multilayers KW - Thermal expansion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538898 DO - https://doi.org/10.1111/jace.18235 SN - 0002-7820 SP - 1 EP - 10 PB - Wiley Online Library AN - OPUS4-53889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, R. A1 - Rabe, Torsten T1 - Lowering the sintering temperature of calcium manganate for thermoelectric applications N2 - This study combines three different approaches to lower the sintering temperature of Sm-doped CaMnO3 to save energy in production and facilitate co-firing with other low-firing oxides or metallization. The surface energy of the powder was increased by fine milling, sintering kinetics were enhanced by additives, and uniaxial pressure during sintering was applied. The shrinkage, density, microstructure, and thermoelectric properties were evaluated. Compared to micro-sized powder, the use of finely ground powder allows us to lower the sintering temperature by 150 K without reduction of the power factor. By screening the effect of various common additives on linear shrinkage of CaMnO3 after sintering at 1100 ○C for 2 h, CuO is identified as the most effective additive. Densification at sintering temperatures below 1000 ○C can be significantly increased by pressure-assisted sintering. The power factor at room temperature of CaMnO3 nano-powder sintered at 1250 ○C was 445 μW/(m K2). Sintering at 1100 ○C reduced the power factor to 130 μW/(m K2) for CaMnO3 nano-powder, while addition of 4 wt.% CuO to the same powder led to ∼290 μW/(m K2). The combination of fine milling, CuO addition, and pressureassisted sintering at 950 ○C resulted in a power factor of ∼130 μW/(m K2). These results show that nano-sized powder and CuO addition are successful and recommendable strategies to produce CaMnO3 with competitive properties at significantly reduced temperatures and dwell times. KW - Sintering additive KW - Liquid phase sintering KW - Pressure assisted sintering PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555467 DO - https://doi.org/10.1063/5.0098015 SN - 2158-3226 VL - 12 IS - 8 SP - 1 EP - 9 PB - American Institute of Physics (AIP) CY - New York, NY AN - OPUS4-55546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Stargardt, Patrick A1 - Moos, Ralf A1 - Mieller, Björn T1 - Co‐Fired Multilayer Thermoelectric Generators Based on Textured Calcium Cobaltite N2 - Thermoelectric generators are very attractive devices for waste heat energy harvesting as they transform a temperature difference into electrical power. However, commercially available generators show poor power density and limited operation temperatures. Research focuses on high‐temperature materials and innovative generator designs. Finding the optimal design for a given material system is challenging. Here, a theoretical framework is provided that allows appropriate generator design selection based on the particular material properties. For high‐temperature thermoelectric oxides, it can be clearly deduced that unileg multilayer generators have the highest potential for effective energy harvesting. Based on these considerations, prototype unileg multilayer generators from the currently best thermoelectric oxide Ca3Co4O9 are manufactured for the first time by industrially established ceramic multilayer technology. These generators exhibit a power density of 2.2 mW/cm² at a temperature difference of 260 K, matching simulated values and confirming the suitability of the technology. Further design improvements increase the power density by a factor of 22 to facilitate practicable power output at temperature differences as low as 7 K. This work demonstrates that reasonable energy harvesting at elevated temperatures is possible with oxide materials and appropriate multilayer design. KW - Optical and Magnetic Materials KW - Electronic PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596306 DO - https://doi.org/10.1002/aelm.202300636 SN - 2199-160X VL - 10 IS - 3 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-59630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stargardt, Patrick A1 - Bresch, Sophie A1 - Falkenberg, Rainer A1 - Mieller, Björn T1 - Effect of Reaction Layers on Internal Stresses in Co‐Fired Multilayers of Calcium Manganate and Calcium Cobaltite N2 - A widespread recovery of waste heat requires a cost‐effective production of thermoelectric generators. Thermoelectric oxides are predestined for use at high temperatures. For manufacturing reasons, a multilayer generator design will be easily scalable and cost‐effective. To evaluate the potential of ceramic multilayer technology for that purpose, a multilayer of the promising thermoelectric oxides calcium cobaltite (Ca3Co4O9), calcium manganate (CMO, CaMnO3), and glass–ceramic insulation layers is fabricated. Cracks and reaction layers at the interfaces are observed in the microstructure. The compositions of these reaction layers are identified by energy‐dispersive X‐ray spectroscopy and X‐ray diffraction. Mechanical and thermal properties of all layers are compiled from literature or determined by purposeful sample preparation and testing. Based on this data set, the internal stresses in the multilayer after co‐firing are calculated numerically. It is shown that tensile stresses in the range of 50 MPa occur in the CMO layers. The reaction layers have only a minor influence on the level of these residual stresses. Herein, it is proven that the material system is basically suitable for multilayer generator production, but that the co‐firing process and the layer structure must be adapted to improve densification and reduce the tensile stresses in the CMO. KW - Ceramic multilayers KW - Co-firings KW - Internal stresses PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601626 DO - https://doi.org/10.1002/pssa.202300956 SP - 1 EP - 9 PB - Wiley VHC-Verlag AN - OPUS4-60162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -