TY - CHAP A1 - Breitenbach, Romy A1 - Toepel, Jörg A1 - Dementyeva, Polina A1 - Knabe, Nicole A1 - Gorbushina, Anna ED - Flemming, H.-C. ED - Neu, T. R. ED - Wingener, J. T1 - Snapshots of fungal extracellular matrices N2 - Fungal extracellular materials reinforce a constant interaction between their cell wall and the environment. A dynamic mixture of chitin, glucans, mannans, glycoproteins, glycolipids and pigments supports the success of all fungal life styles – from symbiotic to the free-living and pathogenic. Fungi are perfectly adapted to grow on surfaces and in porous environments, where they form medically and geochemically relevant biofilms. Fungal EPS are critical in adhesion to other fungi, other cells or substratum as well as in the following interaction with the host immune system or material they attack, degrade and deteriorate respectively. Characterisation of extracellular compounds and understanding of its function is necessary to limit damage caused by fungal activity. All necessary methodology from chemical characterization to complete genetic analyses has been developed for medically important fungi. Now it is time to apply this knowledge to the numerous, largely aerobic and very active organisms that occupy a wide range of atmosphere-exposed habitats in the upper lithosphere. One can expect that analogies between medically- and environmentally-relevant model fungal species will help us to address the dynamics of the fungal cell EPS matrix in much more efficient and widely applicable ways. KW - Fungal cell wall KW - Melanin KW - Fungal life styles KW - Environmental and pathogenic fungi KW - Model fungal biofilms KW - Biogenic weathering PY - 2016 SN - 9781780407418 SN - 9781780407425 U6 - https://doi.org/10.2166/9781780407418 SP - Chapter 14, 269 EP - 299 PB - IWA Publishing CY - London, UK AN - OPUS4-38094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Knabe, Nicole A1 - Breitenbach, Romy A1 - Dittrich, M. A1 - Sturm, Heinz A1 - Zaisev, V. A1 - Paulo, C. A1 - Toepel, Jörg A1 - Gorbushina, Anna T1 - Microscopy-based Raman spectroscopy of fungal melanins in a genetically amenable ascomycete N2 - Fungal melanins are distinctive markers of rock-inhabiting ascomycetes. These complex polyphenols play important roles in stress tolerance while being essential components of fungal cell walls and useful biomarkers. Here we report signatures of melanins and carotenoids in pigment mutant strains of the black yeast Knufia petricola A95 using Raman spectroscopy T2 - 11th Workshop of FT-IR Spectroscopy in Microbiological and Medical Diagnostics CY - Berlin, Germany DA - 19.10.2017 KW - Raman KW - Melanin KW - Rock-inhabiting fungus PY - 2017 AN - OPUS4-43124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -