TY - GEN A1 - Dietlen, Siegmund A1 - Hieronymus, Hartmut A1 - Krause, Ulrich A1 - Plewinsky, Bodo A1 - Schröder, Volkmar A1 - Brandes, E. A1 - Redeker, T. ED - Steen, H. T1 - Sicherheitstechnische Kenngrößen von Gasen und Dämpfen von Flüssigkeiten PY - 2000 SN - 3-527-29848-7 SP - 319 EP - 375 PB - Wiley-VCH CY - Weinheim AN - OPUS4-1491 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Brandes, E. A1 - Dietlen, Siegmund A1 - Hieronymus, Hartmut A1 - Krause, Ulrich A1 - Plewinsky, Bodo A1 - Redeker, T. A1 - Schröder, Volkmar ED - Hattwig, M. T1 - Safety characteristics of gases and vapors PY - 2004 SN - 3-527-30718-4 SP - 271 EP - 323 PB - Wiley-VCH CY - Weinheim AN - OPUS4-5503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Brandes, E. A1 - Dietlen, Siegmund A1 - Hieronymus, Hartmut A1 - Krause, Ulrich A1 - Plewinsky, Bodo A1 - Redeker, T. A1 - Schröder, Volkmar ED - Steen, H. T1 - Eigenschaften reaktionsfähiger Gase und Dämpfe von Flüssigkeiten (Kenngrößen) PY - 2000 SN - 3-527-29848-7 SP - 319 EP - 375 PB - Wiley-VCH CY - Weinheim AN - OPUS4-6893 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brandes, E. A1 - Hieronymus, Hartmut T1 - Sicherheit bei mikrostrukturierten Reaktoren - Ergebnisse und Schlussfolgerungen aus Untersuchungen am Beispiel von Ethan/Sauerstoff-, Ethen/Sauerstoff- und Ethen/Lachgas-Gemischen N2 - Die Mikroverfahrenstechnik (typische innere Abmessungen der Apparaturen < 1000 pin) erfährt zunehmend Interesse für industrielle Anwendungen. Grund hierfür sind verschiedene Vorteile gegenüber konventionellen chemischen. Reaktoren wie ein erhöhter Wärme- und Stofftransport und größere spezifische Phasengrenzen. Hierdurch können im Zuge einer Prozessintensivierung höhere Raum-Zeil-Ausbeuten und Selektivitäten und darüber hinaus eine sicherere Prozessführung erreicht werden. Dies trifft vor allem dann zu, wenn als Oxidationsmittel reiner Sauerstoff, Distickstoffmonoxid (Lachgas) oder ähnliche Substanzen mit hohem Oxidationspotential eingesetzt werden. Vielfach wird angenommen, dass Mikroreaktoren inhärent sicher gegenüber Deflagrations- und Detonationsvorgängen sind. Durchmesser der Reaktionskanäle von 0,5 nun und kleiner lassen Flammendurchschläge zumindest bei Stoffen der Explosionsgruppen I1A und TIB für Gemische mit Luft als Oxidationsmittel und Umgebungsbedingungen (ca. 20 °C, ca. 1.013 mbar) als ausgeschlossen erscheinen. Für die in der Mikroverfahrenstechnik bevorzugten Reaktionsbedingungen wie erhöhter Druck, erhöhte Temperatur und vor allem Oxidationsmittel mit erhöhtem Oxidalionspotential gilt dies jedoch nicht. KW - Mikroreaktor KW - Explosion KW - Detonation KW - Oxidation PY - 2011 SN - 0030-834X VL - 121 IS - 1 SP - 55 EP - 58 PB - Wirtschaftsverl. NW CY - Bremerhaven AN - OPUS4-23515 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -