TY - CONF A1 - Bradley, I. A1 - Otremba, Frank A1 - Birk, A. M. A1 - Bisby, L. T1 - Novel equipment for the study of pressure vessel response to fire N2 - Pressurisation of full-containment pressure vessels in fire is known to be driven by thermal stratification. The predominant mode of heat transfer to the contents (convection from the shell to the liquid phase) results in formation of „hot“ boundary layers. Sub-cooled boiling may also be present. The warm layer rises to the surface through buoyancy and bubble flow, increasing the surface of the liquid above that of the bulk temperature, and hence driving a pressure rise. For reliable prediction of the complex effects governing vessel pressurization a three-dimensional numerical model is required. Work is being undertaken on such a model by other institutions in cooperation with this project. T2 - ASME 2016 CY - Phoenix, Arizona, USA DA - 11.11.2016 KW - Vessels KW - Novel equipment PY - 2016 AN - OPUS4-38433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bradley, I. A1 - Birk, A.M. A1 - Otremba, Frank A1 - Gonzalez III, F. A1 - Prabhakaran, A. A1 - Bisby, L. T1 - Development and characterisation of an engulfing hydrocarbon pool fire test for hazardous materials pressure vessels N2 - The US Department of Transportation, Federal Railroad Administration (FRA) current regulations for rail tank cars in the United States stipulate that, for certain hazardous materials, tank cars shall have a thermal protection system capable of preventing rupture of the tank for 100 minutes when exposed to an engulfing fire with a blackbody equivalent flame temperature of 871 °C (+/- 56°C), and that tanks shall have a pressure relief device set at an appropriate level (depending on the type of tank car and contents). Pressure relief devices are a source of non-accident releases, and hence may cause serious incidents when tanks are transporting hazardous materials. Industry in North America would therefore benefit from removal of pressure relief devices on tanks transporting certain hazardous materials. Such an approach is known as full Containment, and is standard practice in Europe. In 2014 the FRA commissioned an experimental study to investigate the ability of a specific design of rail tank to resist rupture without incorporating a pressure release valve. As a precursor to tests on tanks there was a need to develop and characterise a simulated pool fire capable of reliably exposing large-scale tanks to repeatable, uniform conditions. This paper describes such a fire test setup, developed using a burner array system fuelled by liquid propane and designed to produce luminous, low velocity flames representative of those found in large hydrocarbon pool fires. The experimental set-up is described, along with the Instrumentation (directional flame thermometers, infra-red camera, and thermally massive calorimeter) and methodology used to characterise the fire. Comparisons are made against previous fire tests on vessels to assess the suitability of the experimental set-up for future vessel testing. T2 - CONFAB 2015 - 1st International conference on structural safety under fire & blast CY - Glasgow, UK DA - 02.09.2015 PY - 2015 SP - 485 EP - 494 AN - OPUS4-34545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Bradley, I. A1 - Romero-Navarrete, José A. T1 - Boiling Thermohydraulics within Pressurized Vessels N2 - Transport safety depends in great extent of what happens to the cargo once the carrying vehicle derails or rollovers. The exposure of tanks to direct fire is a condition that potentially involves catastrophic consequences. Studying the behavior of the contained fluid under these drastic circumstances, is critical to develop methods and techniques to mitigate the serious consequences of many mishaps. In this paper, the experimental potentials of a Particle Image Velocimetry data acquisition system are described, for providing experimental data that could be used to calibrate mathematical models. As an example of the situations that need to be modelled, an experiment is described concerning the effect of the boundary conditions and protecting devices, on the rate of variation of pressure and temperature of the fluid in a tank exposed to a direct fire. In this regard, the results emphasize the importance of equipping the vessels with both thermal insulation and safety valves. T2 - WCECS 2018 CY - San Francisco, CA, USA DA - 23.10.2018 KW - Thermohydraulic KW - Vessels PY - 2018 SN - 978-988-14049-0-9 SN - 2078-0958 SN - 2078-0966 SP - 538 EP - 542 AN - OPUS4-46419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bradley, I. A1 - Scarponi, G. E. A1 - Otremba, Frank A1 - Cozzani, V. A1 - Birk, A. M. T1 - Experimental Analysis of a Pressurized Vessel Exposed to Fires: an Innovative Representative Scale Apparatus N2 - A novel deign of test equipment has been commissioned to investigate thermal stratification and boiling during fire exposure of pressure vessels. Extensive temperature measurements and video of the internal conditions during fire exposure are possible, and the equipment has been designed for future compatibility with laser-based velocity measurement techniques. It is expected to generate data large quantities of data that will be of use in validation of two- and three-dimensional CFD models for the prediction of pressure vessel behaviour in fire. Future work will seek to characterize the boundary layer conditions in detail for a range of test fluids, fill levels and fire-induced thermal boundary conditions. Initial tests undertaken during commissioning may indicate that fire exposure of the vessel wall just above the liquid level can have a notable influence on the pressurization rate, by increasing the degree of superheat. Further experimental and modelling work is required to confirm and quantify this effect, or to rebut this conclusion. T2 - ICH 13th International Conference on Chemical and Process Engineering CY - Milan, Italy DA - 28.05.2017 KW - Representative Scale Apparatus KW - Pressurized Vessel, KW - Fire PY - 2017 VL - 57 SP - 1 EP - 6 AN - OPUS4-40663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bradley, I. A1 - Scarponi, G. E. A1 - Otremba, Frank A1 - Cozzani, V. A1 - Birk, A. M. T1 - Experimental analysis of a pressurized N2 - Test equipment has been commissioned and proven to work.Initial data on temperatures, and pressurization rates have been collected and are now under analysis. The level of detail of the measurements is suitable for CFD validation. Initial PIV studies were undertaken to measure the velocity field. T2 - ICH 13th International Conference on Chemical and Process Engineering CY - Milan, Italy DA - 28.05.2017 KW - Fire KW - pressurized vessel KW - Representative scale apparatus PY - 2017 AN - OPUS4-40665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -