TY - CONF A1 - Krankenhagen, Rainer A1 - Maierhofer, Christiane A1 - Heckel, Thomas A1 - Brackrock, Daniel A1 - Gower, M. A1 - Lodeiro, M. A1 - Baker, G. T1 - Quantitative comparison of different non-destructive techniques for the detection of artificial defects in GFRP T2 - Proceedings of the 12th ECNDT N2 - In order to test their suitability different non-destructive methods were performed to inspect a GFRP plate with artificial defects. These defects were manufactured by means of thin PTFE sheets inserted between two plies in three different depth. The inspection methods were microwave reflection, flash thermography and phased array ultrasonics, all applied to the same specimen. Selected results are shown for all methods demonstrating opportunities and limits of the particular inspection methods. The achieved detection limits and further application aspects are compared directly to provide a useful information for the planning of inspection tasks. T2 - ECNDT CY - Gothenburg, Sweden DA - 11.06.2018 KW - Fiber resisted polymers KW - Non-destructive testing KW - Thermographic testing KW - Ultrasonic testing PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-453728 SP - ECNDT-0247-2018 AN - OPUS4-45372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Röllig, Mathias A1 - Heckel, Thomas A1 - Brackrock, Daniel A1 - Gaal, Mate T1 - Quantification of impact damages in CFRP and GFRP structures with thermography and ultrasonics T2 - Proceedings of QIRT 2018 N2 - The extent of damage caused by impacts in fibre reinforced composites depends on the energy of the impacts, on the velocity and the shape of the impacting body, on the material and structure of the composite and on the geometry of the structure. Here, mainly the thickness of the component is essential. The non-destructive evaluation of these damages can be carried out using both ultrasound and active thermography methods. A comparison of the detection sensitivity of these methods for the different damages is carried out in this paper depending on the fibre composite material used (CFRP and GFRP), the thickness of the material and the impact energy. The NDT methods used after the damage are supplemented by thermographic measurements with high temporal resolution, which were already recorded during the impact. T2 - 14th Quantitative InfraRed Thermography Conference CY - Berlin, Germany DA - 25.06.2018 KW - Active thermography KW - Passive thermography KW - Ultrasonics KW - CFRP KW - GFRP KW - Impact PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-454952 UR - http://www.qirt.org/archives/qirt2018/papers/126.pdf DO - https://doi.org/10.21611/qirt.2018.126 SP - 933 EP - 940 PB - DGZfP e. V. AN - OPUS4-45495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hosseini, Seyed M.H. A1 - Ségur, D. A1 - Boehm, Rainer A1 - Gohlke, Dirk A1 - Heckel, Thomas A1 - Riemer, S. A1 - Brackrock, Daniel A1 - Gaal, Mate T1 - Characterization and optimization of ultrasonic tests for inspection of fiber-reinforced plastic composites in energy related applications T2 - WCNDT 2016 N2 - Applications of fibre reinforced plastic (FRP) composites in modern industries are increasing due to their considerable advantages such as light weight and excellent mechanical properties. Accordingly, importance of operational safety of modern structures made of advanced composites by ensuring the material quality has led to increasing demands for development of non-destructive evaluation (NDE) systems. In the context of a European project entitled “Validated Inspection Techniques for Composites in Energy Applications” (VITCEA), the aim is to develop and validate traceable procedures for novel NDE techniques with contrasting damage detection capabilities in energy related applications such as wind and marine turbine blades, nacelles, oil and gas flexible risers. Accordingly, VITCEA focuses on optimization of ultrasonic tests (UTs) for quantitative defect detection and quality characterization of FRP structures. In this context, the present study describes the ultrasound field in heterogeneous composite materials. The theoretical predictions are compared with simulation results obtained from CIVA a software package dedicated to NDT simulations based on the asymptotic ray theory. T2 - WCNDT 2016 - - 19th World Conference on Non-Destructive Testing CY - München DA - 13.06.2016 KW - Ultrasonic tests KW - Composite KW - Wave propagation KW - Analytical approach PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-356398 SP - We.4.D.5, 1 EP - 8 AN - OPUS4-35639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Boehm, Rainer A1 - Heckel, Thomas A1 - Brackrock, Daniel A1 - Spruch, W. A1 - Beggerow, T. ED - Bond, L. J. ED - Holland, S. ED - Laflamme, S. T1 - High Speed Hollow Axle Inspection with a New Designed Cone Type Phased Array N2 - Hollow axle inspection can be performed without demounting the axles and without dismantling the wheels and the brake discs by using the drilling for the scan. To increase inspection reliability and inspection speed, the application of phased array systems instead of conventional probes is a good choice. For solid shaft inspection phased array setups became standard in the recent years. Nevertheless, for hollow axle inspection typically a number of conventional probes rotating through the axles drilling are applied. The new approach uses an electronically steered rotating sound field from a phased array for the circumferential scan. This is realized by a cone shaped phased array which operates in immersion technique. That allows a significant increase in inspection speed and a reduction of the mechanical effort of the inspection system. The inspection can be carried out by a linear movement of the probe setup along the axles drilling. Applying additional focal laws allows exact inclination and focusing of the sound beam in the plane vertical to the specimen axis to concentrate the sound in the zones close to the external surface. An additional focus in the plane of incidence increases overall resolution and sensitivity. The cone type phased array probe has been optimized to detect transversal flaws in and close to the outer surface of the hollow axle with orientation in the radial-radial plane. The prototype probe system, sound field simulations and measurement results are presented. T2 - 45th Annual Review of Progress in Quantitative Nondestructive Evaluation CY - Portland, Oregon, USA DA - 13.07.2019 KW - Cone Shaped Phased Array KW - Hollow Axle Inspection KW - High Speed Testing PY - 2019 SN - 978-0-7354-1832-5 DO - https://doi.org/10.1063/1.5099834 SN - 0094-243X VL - 2102 IS - 1 SP - UNSP 100006-1 EP - UNSP 100006-11 PB - American Institute of Physics CY - Maryland, Vereinigte Staaten AN - OPUS4-48936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schadow, Florian A1 - Brackrock, Daniel A1 - Gaal, Mate A1 - Heckel, Thomas T1 - Ultrasonic inspection and data analysis of glass- and carbon-fibre-reinforced plastics T2 - 3rd International Symposium on fatigue design and material defects (FDMD 2017) N2 - Non-destructive testing (NDT) helps to find material defects without having an influence on the material itself. It is applied as a method of quality control, for online structural health monitoring, and for inspection of safety related components. Due to the ability of automation and a simple test setup ultrasonic testing is one major NDT technique next to several existing options. Whereas contact technique allows the use of higher frequencies of some MHz and phased array focusing, air-coupled ultrasonic testing (ACUT) shows different advantages. Most significant for ACUT is the absence of any coupling fluid and an economical test procedure respective time and costs. Both contact technique and ACUT have been improved and enhanced during the past years. One important enhancement is the development of airborne transducers based on ferroelectrets, like charged cellular polypropylene (cpp), which makes the application of any matching layers being mandatory in conventional piezoelectric transducers unnecessary. In this contribution we show ultrasonic inspection results of specimens made of carbon- and glass-fibre-reinforced plastic. These specimens include defects represented by drill holes and artificial delaminations of various size and depth. We compare inspection results achieved by using contact technique to those achieved by ACUT. For ACUT, conventional piezoelectric transducers and transducers based on cpp were used, both focused as well as non-focused types. Contact inspections were performed with a multi-channel matrix array probe. Once the inspection data is recorded it can be analysed in order to detect and evaluate defects in the specimen. We present different analysing strategies and compare these regarding detection rate and sizing of defects. T2 - 3rd International Symposium on Fatigue Design and Material Defects, FDMD 2017 CY - Lecco, Italy DA - 19.09.2017 KW - Ultrasonic testing KW - Air-coupled KW - Carbon-fibre-reinforced plastic KW - Glass-fibre-reinforced KW - Material inspection KW - Defect sizing PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-434802 DO - https://doi.org/10.1016/j.prostr.2017.11.092 SN - 2452-3216 VL - 7 SP - 299 EP - 306 PB - Elsevier B.V. AN - OPUS4-43480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -