TY - JOUR A1 - Xin, L. A1 - Mika, J. A1 - Horbert, V. A1 - Bischoff, S. A1 - Schubert, H. A1 - Borowski, J. A1 - Maenz, S. A1 - Huber, R. A1 - Sachse, A. A1 - Illerhaus, Bernhard A1 - Kinne, R. W. T1 - Systematic postoperative assessment of a minimally-invasive sheep model for the treatment of osteochondral defects N2 - To assess the clinical course of a sheep stifle joint model for osteochondral (OC) defects, medial femoral condyles (MFC) were exposed without patella luxation using medial parapatellar skin (3–4 cm) and deep incisions (2–3 cm). Two defects (7 mm diameter; 10 mm depth; OC punch) were left empty or refilled with osteochondral autologous transplantation cylinders (OATS) and explanted after six weeks. Incision-to-suture time, anesthesia time, and postoperative wound or impairment scores were compared to those in sham-operated animals. Implant performance was assessed by X-ray, micro-computed tomography, histology, and immunohistology (collagens 1, 2; aggrecan). There were no surgery-related infections or patellar luxations. Operation, anesthesia, and time to complete stand were short (0.5, 1.4, and 1.5 h, respectively). The wound trauma score was low (0.4 of maximally 4; day 7). Empty-defect and OATS animals reached an impairment score of 0 significantly later than sham animals (7.4 and 4.0 days, respectively, versus 1.5 days). Empty defects showed incomplete healing and dedifferentiation/heterotopic differentiation; OATS-filled defects displayed advanced bone healing with remaining cartilage gaps and orthotopic expression of bone and cartilage markers. Minimally-invasive, medial parapatellar surgery of OC defects on the sheep MFC allows rapid and low-trauma recovery and appears well-suited for implant testing. KW - Osteochondral stifle joint defect KW - Sheep animal model KW - Minimally-invasive parapatellar approach PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520180 SN - 2075-1729 VL - 10 IS - 12 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-52018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -