TY - JOUR A1 - Ringleb, F. A1 - Eylers, K. A1 - Teubner, T. A1 - Boeck, T. A1 - Symietz, Christian A1 - Bonse, Jörn A1 - Andree, Stefan A1 - Krüger, Jörg A1 - Heidmann, B. A1 - Schmid, M. A1 - Lux-Steiner, M. T1 - Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing JF - Applied Physics Letters N2 - A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD. KW - Femtosecond laser KW - Physical vapor deposition KW - Indium KW - Molybdenum substrate KW - Microconcentrator solar cell PY - 2016 DO - https://doi.org/10.1063/1.4943794 SN - 0003-6951 VL - 108 IS - 11 SP - 111904-1 EP - 111904-4 AN - OPUS4-35602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baudach, Steffen A1 - Bonse, Jörn A1 - Kautek, Wolfgang T1 - Ablation experiments on polyimide with femtosecond laser pulses JF - Applied physics A N2 - Some applications of polymer films require the microstructuring of partly uneven substrates. This cannot be achieved by conventional photolithography, usually performed with ultraviolet short-pulse lasers (excimer, fourth harmonic Nd:YAG). When processing thermally sensitive or undoped polymers with low optical absorption, the use of femtosecond laser pulses can improve the ablation precision, also reducing the heat-affected zone. Therefore, a Ti:sapphire laser system was employed to perform ablation experiments on polyimide (PI). The irradiated areas were evaluated by means of optical and scanning electron microscopy. Highly oriented ripple structures, which are related to the polarization state of the laser pulses, were observed in the cavities. The relationship between the ablation threshold fluence and the number of laser pulses applied to the same spot is described in accordance with an incubation model. T2 - 5th International Conference on Laser Ablation ; COLA '99 CY - Göttingen, Germany DA - 1999-07-19 KW - Polyimide KW - Laser KW - Ablation KW - Femtosecond laser PY - 1999 DO - https://doi.org/10.1007/s003390051424 SN - 0947-8396 VL - 69 IS - 7 SP - S395 EP - S398 PB - Springer CY - Berlin AN - OPUS4-780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -