TY - CONF A1 - Bonse, Jörn A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures on materials with varying band gap T2 - International workshop on laser-induced periodic surface structures CY - Enschede, Netherlands DA - 2011-10-11 PY - 2011 AN - OPUS4-24264 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Stegemann, B. A1 - Schüle, M. A1 - Schultz, C. A1 - Richter, M. A1 - Pahl, H.-U. A1 - Endert, H. A1 - Rau, B. A1 - Schlatmann, R. A1 - Quaschning, V. A1 - Fink, F. T1 - Novel Laser Structuring Method for Chalkopyrite Solar Cells T2 - Marie Sklodowska-Curie Symposium on the Foundations of Physical Chemistry CY - Warsaw, Poland DA - 2011-11-18 PY - 2011 AN - OPUS4-24920 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geier, M. A1 - Eberstein, M. A1 - Grießmann, H. A1 - Partsch, U. A1 - Völkel, L. A1 - Böhme, R. A1 - Mann, Guido A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Impact of laser treatment on phosphoric acid coated multicrystalline silicon PV-wafers N2 - The selective emitter is a well-known technology for producing highly doped areas under the metallization grid to improve the solar cell performance. In this work, the influence of laser irradiation on phosphoric acid coated multicrystalline silicon PV-wafers on the wafer surface structure, the phosphorous depth distribution and the electrical contact resistance within the laser treated area as well as the electrical series resistance of laserprocessed solar cells was evaluated. Different laser processing settings were tested including pulsed and continuous wave (cw) laser sources (515 nm, 532 nm, 1064 nm wavelength). Complementary numerical simulations using the finite element method (FEM) were conducted to explain the impact of the laser parameters on the melting behavior (melt duration and geometry). It was found that the melt duration is a key parameter for a successful laser Doping process. Our simulations at a laser wavelengths of 515 nm reveal that low-repetition rate (<500 kHz) laser pulses of 300 ns duration generate a melt duration of ~0.35 µs, whereas upon scanning cw-laser radiation at 532 nm prolongates the melt duration by at least one order of magnitude. Experimentally, the widely used ns-laser pulses did not lead to satisfying laser irradiation results. In contrast, cw-laser radiation and scan velocities of less than 2 m/s led to suitable laser doping featuring low electrical resistances in the laser treated areas. T2 - 26th European photovoltaic solar energy conference and exhibition CY - Hamburg, Germany DA - 05.09.2011 KW - Silicon solar cell KW - Selective emitter KW - Laser processing KW - Doping KW - Simulation PY - 2011 SN - 3-936338-27-2 U6 - https://doi.org/10.4229/26thEUPVSEC2011-2BV.1.7 SP - 1243 EP - 1247 AN - OPUS4-24995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberstein, M. A1 - Geier, M. A1 - Grießmann, H. A1 - Partsch, U. A1 - Voelkel, L. A1 - Böhme, R. A1 - Pentzien, Simone A1 - Koter, Robert A1 - Mann, Guido A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Towards an industrial laser doping process for the selective emitter using phosphoric acid as dopant N2 - Different laser supported approaches have already been realized, proving the great potential of laserdoped selective emitters (LDSE). However, it is challenging to establish a low-cost process by using pulsed laser tools. So far a single-step process only leads to satisfying results utilizing cw-lasers. In this paper we have examined a two-step process to produce laser-doped selective emitters on multicrystalline textured standard silicon photovoltaic wafers (90-Ω/sq-Emitter, SiN-antireflection coating (ARC)). The precise ARC removal by near-infrared fs-laser pulses (30 fs, 800 nm), and the doping of uncoated silicon wafers by ns-laser pulses (8 ns, 532 nm) were systematically investigated. In the fs-experiment, optimum conditions for ARC removal were identified. In the nsexperiments under suitable conditions (melting regime), the phosphorous concentration underneath the wafer surface was significantly increased and the sheet resistance was reduced by nearly a factor of two. Moreover, electrical measurements on fired metallization fingers deposited on the laser processed wafers showed low contact resistances. Hence, wafer conditioning with combined fs-laser- and ns-laser-processes are expected to be a promising technology for producing selective emitters. T2 - 26th European photovoltaic solar energy conference and exhibition CY - Hamburg, Germany DA - 05.09.2011 KW - Laser processing KW - Doping KW - Selective emitter KW - Multicrystalline silicon PY - 2011 SN - 3-936338-27-2 U6 - https://doi.org/10.4229/26thEUPVSEC2011-2BV.1.2 SP - 1220 EP - 1223 AN - OPUS4-24996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, M. A1 - Schultz, C. A1 - Bonse, Jörn A1 - Pahl, H.-U. A1 - Endert, H. A1 - Rau, B. A1 - Schlatmann, R. A1 - Quaschning, V. A1 - Stegemann, B. A1 - Fink, F. T1 - Laser-ablation behavior of thin-film materials used in silicon and CIGSe based solar cells N2 - Structuring of thin-film photovoltaic modules requires basic knowledge of the laser – thin-film interaction in order to adapt the accessible laser parameters, like wavelength, power, repetition rate and scribing speed whilst taking into account the specific material properties of the layer. We have studied the nanosecond laserablation behavior of corresponding layers (i) of silicon based thin-film solar cells with a-Si/µc-Si tandem absorber type and (ii) of back contact and absorber layer of CIGSe solar cells. The respective ablation threshold fluences were determined as integrative parameters describing the specific laser – material interaction. For the threshold determination we used two different methods and developed a new analytical approach taking into account scribing through the glass substrate as it is preferred for most structuring processes. This was done by analyzing the thin film ablation results by means of optical microscopy, profilometry, scanning electron microscopy (SEM). Moreover, we determined the incubation coefficient of the regarded material layers which allows us to predict quantitatively the influence of the spot overlap on the scribing threshold. T2 - 26th European photovoltaic solar energy conference and exhibition CY - Hamburg, Germany DA - 05.09.011 KW - Laser processing KW - Ablation KW - Incubation KW - a-Si/my-Si KW - CIGS PY - 2011 SN - 3-936338-27-2 U6 - https://doi.org/10.4229/26thEUPVSEC2011-3DV.2.8 SP - 2943 EP - 2946 AN - OPUS4-24997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schultz, C. A1 - Schüle, M. A1 - Richter, M. A1 - Pahl, H.-U. A1 - Endert, H. A1 - Bonse, Jörn A1 - Dirnstorfer, I. A1 - Rau, B. A1 - Schlatmann, R. A1 - Quaschning, V. A1 - Fink, F. A1 - Stegemann, B. T1 - P1, P2 and P3 structuring of CIGSe solar cells with a single laser wavelength N2 - Manufacturing of CIGSe thin film solar modules involves typically one laser structuring step (P1) and two mechanical structuring steps (P2 and P3) for serial interconnection. In our approach, complete laser structuring is successfully demonstrated by application of short nanosecond laser pulses (<10 ns) with a single, visible wavelength of 532 nm. The P1 and the P3 trenches are scribed by induced and direct ablation, respectively. For the P2 scribe, the thermal input of the ns laser pulses is used to transform the CIGSe absorber layer locally into a highly conductive compound to provide proper electrical interconnection. These findings promise further simplification and flexibility to thin film solar cell production. T2 - 26th European photovoltaic solar energy conference and exhibition CY - Hamburg, Germany DA - 05.09.2011 KW - Laser processing KW - Nanosecond pulses KW - Ablation KW - Cu(InGa)Se2 KW - Electrical properties PY - 2011 SN - 3-936338-27-2 U6 - https://doi.org/10.4229/26thEUPVSEC2011-3AV.1.35 SP - 2540 EP - 2543 AN - OPUS4-24998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stegemann, B. A1 - Schultz, C. A1 - Schüle, M. A1 - Richter, M. A1 - Pahl, H.-U. A1 - Endert, H. A1 - Bonse, Jörn A1 - Rau, B. A1 - Schlatmann, R. A1 - Quaschning, V. A1 - Fink, F. ED - Luschtinetz, T. ED - Lehmann, J. T1 - Neuartige Laserstrukturierung von CIGSe-Dünnschicht-Solarzellen N2 - Ein wesentlicher Vorteil der Dünnschichtphotovoltaik gegenüber der waferbasierten Photovoltaik liegt in der monolithischen Serienverschaltung. Bei der Herstellung von Chalkopyrit(CIGSe) -Dünnschicht-Solarmodulen erfolgen dafür typischerweise ein Laser-Strukturierungsschritt (P1) und zwei mechanische Strukturierungsschritte (P2, P3). In diesem Beitrag wird gezeigt, dass die Strukturierung von CIGSe-Solarmodulen vollständig mit kurzen Laserpulsen (<10 ns Pulsdauer) und einer einzigen Wellenlänge (532 nm) möglich ist. Der P1- und P3-Schnitt erfolgen durch direkte induzierte Ablation. Für den P2-Schnitt wird gezielt der hohe Wärmeeintrag der ns-Laserpulse genutzt, um die CIGSe- Absorberschicht lokal aufzuschmelzen und strukturell so zu verändern, dass eine elektrisch gut leitende Verbindung zwischen Front- und Rückkontakt entsteht. N2 - A major advantage of thin film photovoltaics over wafer-based photovoltaics is the monolithic series connection. Manufacturing of chalcopyrite (CIGSe) thin film solar modules involves typically one laser structuring step (P1) and two mechanical structuring steps (P2 and P3) for serial interconnection. In our approach, complete laser structuring is successfully demonstrated simply by application of short nanosecond laser pulses (<10 ns) with a single, visible wavelength of 532 nm. The P1 and the P3 trenches are scribed by induced direct ablation. For the P2 scribe, the thermal input of the ns laser pulses is used to transform the CIGSe absorber layer locally into a highly conductive compound to provide proper electrical interconnection between the front and back contact. T2 - 18. Symposium "Nutzung regenerativer Energiequellen und Wasserstofftechnik" / VDI-Tagung "Energieland Mecklenburg-Vorpommern" CY - Stralsund, Germany DA - 03.11.2011 KW - Photovoltaik KW - Dünnschichtsolarzellen KW - Chalkopyrite KW - Laserstrukturierung PY - 2011 SN - 978-3-9813334-4-2 SP - 204 EP - 210 AN - OPUS4-24999 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Beke, S. A1 - Sugioka, K. A1 - Midorikawa, K. A1 - Bonse, Jörn ED - Hemsworth, E.J. T1 - Nanaosecond and femtosecond laser ablation of TeO2 crystals: surface characterization and plasma analysis N2 - Near-IR femtosecond (fs) (pulse duration = 150 fs, wavelength = 775 nm, repetition rate 1 kHz) and VUV nanosecond (ns) (pulse duration = 20 ns, wavelength = 157 nm, repetition rate 1 to 5 Hz) laser pulse ablation of single-crystalline TeO2 (c-TeO2 ) surfaces was performed in air using the direct focusing technique. A multi-method characterization using optical microscopy, atomic force microscopy and scanning electron microscopy revealed the surface morphology of the ablated craters. This allowed us at each irradiation site to characterize precisely the lateral and vertical dimensions of the laser-ablated craters for different laser pulse energies and number of laser pulses per spot. Based on the obtained information, we quantitatively determined the ablation threshold fluence for the fs laser irradiation when different pulse numbers were applied to the same spot using two independent extrapolation techniques. We found that in the case of NIR fs laser pulse irradiation, the ablation threshold significantly depends on the number of laser pulses applied to the same spot indicating that incubation effects play an important role in this material. In the case of VUV ns laser pulses, the ablation rate is significantly higher due to the high photon energy and the predominantly linear absorption in the material. These results are discussed on the basis of recent models of the interaction of laser pulses with dielectrics. In the second part of this chapter, we use time- of-flight mass spectrometry (TOFMS) to analyze the elemental composition of the ablation products generated upon laser irradiation of c-TeO2 with single fs- (pulse duration ~200 fs, wavelength 398 nm) and ns-pulses (pulse duration 4 ns, wavelength 355 nm). Due to the three order of magnitude different peak intensities of the ns- and fs laser pulses, significant differences were observed regarding the laser-induced species in the plasma plume. Positive singly, doubly and triply charged Te ions (Te+, Te2+, Te3+) in the form of many different isotopes were observed in case of both irradiations. In the case of the ns-laser ablation, the TeO+ formation was negligible compared to the fs case and there was no Te trimer (Te3+) formation observed. It was found that the amplitude of Te ion signals strongly depends on the applied laser pulse energy. Singly charged oxygen ions (O+) are always present as a byproduct in both kinds of laser ablation. KW - Tellurium dioxide crystals KW - Femtosecond laser ablation KW - VUV nanosecond laser ablation KW - Multiphoton absorption KW - Time-of-flight mass spectroscopy KW - Incubation KW - Optical properties KW - Scanning electron microscopy KW - Atomic force microscopy KW - Isotopes PY - 2011 SN - 978-1-61324-851-5 N1 - Serientitel: Physics Research and Technology – Series title: Physics Research and Technology IS - Chapter 4 SP - 77 EP - 96 PB - Nova Science Publishers, Inc. AN - OPUS4-25454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Krüger, Jörg A1 - Rohloff, M. A1 - Das, S. K. A1 - Höhm, S. A1 - Rosenfeld, A. T1 - Femtosecond laser-induced periodic surface structures: importance of transient excitation stages T2 - SPIE Conference on Optics+Optoelktronics 2011, Conference "Damage to VUV, EUV and X-ray Optics (XDAM3)" CY - Prague, Czech Republic DA - 2011-04-18 PY - 2011 AN - OPUS4-23549 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Mermillod-Blondin, A. A1 - Mauclair, C. A1 - Rosenfeld, A. A1 - Stoian, R. A1 - Audouard, E. T1 - Time-resolved imaging of bulk a-SiO2 upon various ultrashort excitation sequences T2 - SPIE Photonics West Conference: Frontiers in Ultrafast Optics: Biomedical, Scientific and Industrial Applications XI (Conference 7925) CY - San Francisco, CA, USA DA - 2011-01-22 PY - 2011 AN - OPUS4-22095 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Beke, S. A1 - Sugioka, K. A1 - Midorikawa, K. A1 - Bonse, Jörn ED - Hemsworth, E.J. T1 - Nanosecond and femtosecond laser ablation of TeO2 crystals: surface characterization and plasma analysis N2 - Near-IR femtosecond (fs) (pulse duration = 150 fs, wavelength = 775 um, Repetition rate 1 kHz) and VUV nanosecond (ns) (pulse duration = 20 ns, wavelength = 157 nm, repetition rate 1 to 5 Hz) laser pulse ablation of single-crystalline TeO? (c-Te02) surfaces was performed in air using the direct focusing technique. A multi-method characterization using optical microscopy, atomic force microscopy and scanning electron microscopy revealed the surface morphology of the ablated craters. This allowed us at each irradiation site to characterize precisely the lateral and vertical dimensions of the laser-ablated craters for different laser pulse energies and number of laser pulses per spot. Based on the obtained information, we quantitatively determined the Ablation threshold fluence for the fs laser irradiation when different pulse numbers were applied to the same spot using two independent extrapolation techniques. We found that in the case of NIR fs laser pulse irradiation, the ablation threshold significantly depends on the number of laser pulses applied to the same spot indicating that incubation effects play an important role in this material. In the case of VUV ns laser pulses, the ablation rate is significantly higher due to the high photon energy and the predominantly linear absorption in the material. These results are discussed on the basis of recent models of the interaction of laser pulses with dielectrics. In the second part of this chapter, we use timeof-flight mass spectrometry (TOFMS) to analyze the elemental composltion of the ablation products generated upon laser irradiation of c-Te02 with single fs- (pulse duration ~ 200 fs, wavelength 398 nm) and ns-pulses (pulse duration 4 ns, wavelength 355 nm). Due to the three Order of magnitude different peak intensities of the ns- and fs laser pulses, significant differences were observed regarding the laser-induced species in the plasma plume. Positive singly, doubly and triply charged Te ions (Te+, Te2+, Te3+) in the form of many different isotopes were observed in case of both irradiations. In the case of the ns-laser ablation, the TeO+ formation was negligible compared to the fs case and there was no Te trimer (Te3+) formation observed. It was found that the amplitude of Te ion Signals strongly depends on the applied laser pulse energy. Singly charged Oxygen ions (0+) are always present as a byproduct in both kinds of laser ablation. KW - Femtosecond laser ablation KW - Nanosecond laser ablation KW - Damage threshold KW - TeO2 KW - Dielectrics KW - Time-of-flight mass spectrometry (TOF-MS) PY - 2011 SN - 978-1-61324-851-5 N1 - Serientitel: Physics Research and Technology – Series title: Physics Research and Technology IS - Chapter 4 SP - 77 EP - 96 PB - Nova Science Publishers, Inc. AN - OPUS4-25465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beke, S. A1 - Kobayashi, T. A1 - Sugioka, K. A1 - Midorikawa, K. A1 - Bonse, Jörn T1 - Time-of-flight mass spectroscopy of femtosecond and nanosecond laser ablated TeO2 crystals N2 - Single-pulse femtosecond (fs) (pulse duration ~200 fs, wavelength 398 nm) and nanosecond (ns) (pulse duration 4 ns, wavelength 355 nm) laser ablation have been applied in combination with time-of-flight mass spectrometer (TOFMS) to analyze the elemental composition of the plasma plume of single-crystalline telluria (c-TeO2, grown by the balance controlled Czochralski growth method). Due to the three-order difference of the peak intensities of the ns and fs-laser pulses, significant differences were observed regarding the laser-induced species in the plasma plume. Positive singly, doubly and triply charged Te ions (Te+, Te2+, Te3+) in the form of their isotopes were observed in case of both irradiations. In case of the ns-laser ablation the TeO+ formation was negligible compared to the fs case and there was no Te trimer (Te3+) formation observed. It was found that the amplitude of Te ion signals strongly depended on the applied laser pulse energy. Singly charged oxygen ions (O+) are always present as a byproduct in both kinds of laser ablation. KW - Time-of-flight mass spectroscopy KW - Tellurium dioxide crystals KW - second laser KW - Nanosecond laser KW - Ablation PY - 2011 U6 - https://doi.org/10.1016/j.ijms.2010.08.022 SN - 0168-1176 SN - 0020-7381 SN - 1387-3806 SN - 1873-2798 VL - 299 IS - 1 SP - 5 EP - 8 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-22490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mermillod-Blondin, A. A1 - Mauclair, C. A1 - Bonse, Jörn A1 - Stoian, R. A1 - Audouard, E. A1 - Rosenfeld, A. A1 - Hertel, I.V. T1 - Time-resolved imaging of laser-induced refractive index changes in transparent media N2 - We describe a method to visualize ultrafast laser-induced refractive index changes in transparent materials with a 310 fs impulse response and a submicrometer spatial resolution. The temporal profile of the laser excitation sequence can be arbitrarily set on the subpicosecond and picosecond time scales with a pulse shaping unit, allowing for complex laser excitation. Time-resolved phase contrast microscopy reveals the real part of the refractive index change and complementary time-resolved optical transmission microscopy measurements give access to the imaginary part of the refractive index in the irradiated region. A femtosecond laser source probes the complex refractive index changes from the excitation time up to 1 ns, and a frequency-doubled Nd:YAG laser emitting 1 ns duration pulses is employed for collecting data at longer time delays, when the evolution is slow. We demonstrate the performance of our setup by studying the energy relaxation in a fused silica sample after irradiation with a double pulse sequence. The excitation pulses are separated by 3 ps. Our results show two dimensional refractive index maps at different times from 200 fs to 100 µs after the laser excitation. On the subpicosecond time scale we have access to the spatial characteristics of the energy deposition into the sample. At longer times (800 ps), time-resolved phase contrast microscopy shows the appearance of a strong compression wave emitted from the excited region. On the microsecond time scale, we observe energy transfer outside the irradiated region. KW - High-speed optical techniques KW - Light transmission KW - Neodymium KW - Optical harmonic generation KW - Optical pulse shaping KW - Refractive index KW - Self-induced transparency KW - Silicon compounds KW - Solid lasers PY - 2011 UR - http://rsi.aip.org/resource/1/rsinak/v82/i3/p033703_s1 U6 - https://doi.org/10.1063/1.3527937 SN - 0034-6748 SN - 1089-7623 VL - 82 IS - 3 SP - 033703-1 EP - 033703-8 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-23308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures N2 - The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon wafer surfaces by linearly polarized Ti:sapphire femtosecond laser pulses (pulse duration 130 fs, central wavelength 800 nm) is studied experimentally and theoretically. In the experiments, so-called low-spatial frequency LIPSS (LSFL) were found with periods smaller than the laser wavelength and an orientation perpendicular to the polarization. The experimental results are analyzed by means of a new theoretical approach, which combines the widely accepted LIPSS theory of Sipe et al. with a Drude model, in order to account for transient (intra-pulse) changes of the optical properties of the irradiated materials. It is found that the LSFL formation is caused by the excitation of surface plasmon polaritons, SPPs, once the initially semiconducting material turns to a metallic state upon formation of a dense free-electron-plasma in the material and the subsequent interference between its electrical field with that of the incident laser beam resulting in a spatially modulated energy deposition at the surface. Moreover, the influence of the laser-excited carrier density and the role of the feedback upon the multi-pulse irradiation and its relation to the excitation of SPP in a grating-like surface structure is discussed. KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures KW - (LIPSS) KW - Optical properties KW - Surface plasmon polaritons KW - Semiconductors KW - Silicon PY - 2011 U6 - https://doi.org/10.1016/j.apsusc.2010.11.059 SN - 0169-4332 SN - 1873-5584 VL - 257 IS - 12 SP - 5420 EP - 5423 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-23309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Rosenfeld, A. A1 - Krüger, Jörg ED - Panchenko, V. ED - Mourou, G. ED - Zheltikov, A. M. T1 - Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities N2 - The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of semiconductors and dielectrics by linearly polarized high-intensity Ti:sapphire fs-laser pulses (τ ~100 fs, λ ~800 nm) is studied experimentally and theoretically. In the experiments, two different types of LIPSS exhibiting very different spatial periods are observed (socalled LSFL – low spatial frequency LIPSS, and HSFL - high spatial frequency LIPSS), both having a different dependence on the incident laser fluence and pulse number per spot. The experimental results are analyzed by means of a new theoretical approach, which combines the generally accepted LIPSS theory of J. E. Sipe and co-workers [Phys. Rev. B 27, 1141-1154 (1983)] with a Drude model, in order to account for transient changes of the optical properties of the irradiated materials. The joint Sipe-Drude model is capable of explaining numerous aspects of fs-LIPSS formation, i.e., the orientation of the LIPSS, their fluence dependence as well as their spatial periods. The latter aspect is specifically demonstrated for silicon crystals, which show experimental LSFL periods Λ somewhat smaller than λ. This behaviour is caused by the excitation of surface plasmon polaritons, SPP, (once the initially semiconducting material turns to a metallic state upon formation of a dense free-electron-plasma in the material) and the subsequent interference between its electrical fields with that of the incident laser beam, resulting in a spatially modulated energy deposition at the surface. Upon multi-pulse irradiation, a feedback mechanism, caused by the redshift of the resonance in a grating-assisted SPP excitation, is further reducing the LSFL spatial periods. The SPP-based mechanism of LSFL successfully explains the remarkably large range of LSFL periods between ~0.6 λ and λ. T2 - LAT 2010 - International Conference on Lasers, Applications, and Technologies CY - Kazan, Russia DA - 23.08.2010 KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Surface plasmon polaritons KW - Second harmonic generation (SHG) KW - Silicon KW - Semiconductors KW - Dielectrics PY - 2011 U6 - https://doi.org/10.1117/12.879813 SN - 0277-786X N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE VL - 7994 SP - 79940M-1 EP - 79940M-10 CY - Bellingham, USA AN - OPUS4-23291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rohloff, M. A1 - Das, S.K. A1 - Höhm, S. A1 - Grunwald, R. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences N2 - The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of five Ti:sapphire femtosecond (fs) laser pulse pairs (150 fs, 800 nm) is studied experimentally. A Michelson interferometer is used to generate near-equal-energy double-pulse sequences with a temporal pulse delay from -20 to +20 ps between the cross-polarized individual fs-laser pulses (~0.2 ps resolution). The results of multiple double-pulse irradiation sequences are characterized by means of Scanning Electron and Scanning Force Microscopy. Specifically in the sub-ps delay domain striking differences in the surface morphologies can be observed, indicating the importance of the laser-induced free-electron plasma in the conduction band of the solids for the formation of LIPSS. KW - Atomic force microscopy KW - Conduction bands KW - High-speed optical techniques KW - Laser beam effects KW - Scanning electron microscopy KW - Silicon compounds KW - Surface morphology PY - 2011 U6 - https://doi.org/10.1063/1.3605513 SN - 0021-8979 SN - 1089-7550 VL - 110 IS - 1 SP - 014910-1 - 014910-4 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-24049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stegemann, B. A1 - Richter, M. A1 - Schultz, C. A1 - Pahl, H.-U. A1 - Endert, H. A1 - Bonse, Jörn A1 - Rau, B. A1 - Quaschning, V. A1 - Fink, F. T1 - One wavelength fits all N2 - Structuring of Thin-film Solar Cells with a Single Laser Wavelength Structuring of a PV module into a number of cells is necessary to lower the current and to increase the voltage, and is typically accomplished with nanosecond laser pulses of different wavelengths. Duetothe many available laser sources, complex and expensive scribing Setups are necessary. To overcome this a concept for laser structuring of thin-film PV modules using a single wavelength allows prediction ofthe ablation behaviourfor a given laser pulse energy. KW - Thin-film solar cells KW - Nanosecond laser ablation KW - 532 nm wavelength KW - Laser scribing KW - Damage threshold PY - 2011 SN - 1869-8913 VL - 2 IS - 6 SP - 46 EP - 48 PB - Hüthig CY - Heidelberg AN - OPUS4-24158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Hertwig, Andreas A1 - Koter, Robert A1 - Weise, Matthias A1 - Beck, Uwe A1 - Reinstädt, Philipp A1 - Griepentrog, Michael A1 - Krüger, Jörg A1 - Picquart, M. A1 - Haro-Poniatowski, E. T1 - Analysis of femtosecond laser irradiation effects on amorphous hydrogenated hard carbon layers: Combining topometry, micro Raman spectroscopy and microsale mechanical indentation T2 - 11th International Conference on Laser Ablation (COLA 2011) CY - Playa del Carmen, Mexico DA - 2011-11-13 PY - 2011 AN - OPUS4-24189 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Höhm, S. A1 - Rohloff, M. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures: recent experimental and theoretical approaches T2 - 11th International Conference on Laser Ablation (COLA 2011) CY - Playa del Carmen, Mexico DA - 2011-11-13 PY - 2011 AN - OPUS4-24191 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mermillod-Blondin, A. A1 - Mauclair, C. A1 - Rosenfeld, A. A1 - Bonse, Jörn A1 - Stoian, R. A1 - Audouard, E. T1 - Time-resolved imaging of bulk a-SiO2 upon various ultrashort excitation sequences N2 - Ultrashort pulses lasers are tools of choice for functionalizing the bulk of transparent materials. In particular, direct photoinscription of simple photonic functions have been demonstrated. Those elementary functions rely on the local refractive index change induced when focusing an ultrashort pulse in the volume of a transparent material. The range of possibilities offered by direct photoinscription is still under investigation. To help understanding, optimizing and assessing the full potential of this method, we developed a time-resolved phase contrast microscopy setup. The imaginary part (absorption) and the real part of the laser-induced complex refractive index can be visualized in the irradiated region. The setup is based on a commercially available phase contrast microscope extended into a pump-probe scheme. The originality of our approach is that the illumination is performed by using a pulsed laser source (i.e. a probe beam). Speckle-related issues are solved by employing adequate sets of diffusers. This laser-microscopy technique has a spatial resolution of 650 nm, and the impulse response is about 300 fs. The laser-induced refractive index changes can be tracked up to milliseconds after the energy deposition. The excitation beam (the pump) is focused with a microscope objective (numerical aperture of 0.45) into the bulk of an a-SiO2 sample. The pump beam can be temporally shaped with a SLM-based pulse shaping unit. This additional degree of flexibility allows for observing different interaction regimes. For instance, bulk material processing with femtosecond and picosecond duration pulses will be studied. T2 - Photonics West 2011 CY - San Francisco, CA, USA DA - 22.01.2011 PY - 2011 U6 - https://doi.org/10.1117/12.876687 VL - 7925 IS - 79250R SP - 1 EP - 7 AN - OPUS4-23332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Höhm, S. A1 - Rohloff, M. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures on semiconductors and dielectrics T2 - EMRS Spring Meeting 2011, Symposium J "Laser materials processing for micro and nano applications" CY - Nice, France DA - 2011-05-09 PY - 2011 AN - OPUS4-23380 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -