TY - JOUR A1 - Puerto, D. A1 - Siegel, J. A1 - Gawelda, W. A1 - Galvan-Sosa, M. A1 - Ehrentraut, L. A1 - Bonse, Jörn A1 - Solis, J. T1 - Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics N2 - We have studied plasma formation and relaxation dynamics along with the corresponding topography modifications in fused silica and sapphire induced by single femtosecond laser pulses (800 nm and 120 fs). These materials, representative of high bandgap amorphous and crystalline dielectrics, respectively, require nonlinear mechanisms to absorb the laser light. The study employed a femtosecond time-resolved microscopy technique that allows obtaining reflectivity and transmission images of the material surface at well-defined temporal delays after the arrival of the pump pulse which excites the dielectric material. The transient evolution of the free-electron plasma formed can be followed by combining the time-resolved optical data with a Drude model to estimate transient electron densities and skin depths. The temporal evolution of the optical properties is very similar in both materials within the first few hundred picoseconds, including the formation of a high reflectivity ring at about 7 ps. In contrast, at longer delays (100 ps–20 ns) the behavior of both materials differs significantly, revealing a longer lasting ablation process in sapphire. Moreover, transient images of sapphire show a concentric ring pattern surrounding the ablation crater, which is not observed in fused silica. We attribute this phenomenon to optical diffraction at a transient elevation of the ejected molten material at the crater border. On the other hand, the final topography of the ablation crater is radically different for each material. While in fused silica a relatively smooth crater with two distinct regimes is observed, sapphire shows much steeper crater walls, surrounded by a weak depression along with cracks in the material surface. These differences are explained in terms of the most relevant thermal and mechanical properties of the material. Despite these differences the maximum crater depth is comparable in both material at the highest fluences used (16J/cm2). The evolution of the crater depth as a function of fluence can be described taking into account the individual bandgap of each material. KW - Femtosecond laser ablation KW - Plasma formation KW - Time-resolved microscopy KW - Dielectrics KW - Fused silica KW - Sapphire KW - Scanning force microscopy KW - Reflectivity measurements KW - Transmission measurements KW - Drude model PY - 2010 U6 - https://doi.org/10.1364/JOSAB.27.001065 SN - 0740-3224 SN - 1520-8540 VL - 27 IS - 5 SP - 1065 EP - 1076 PB - Optical Society of America CY - Washington, DC AN - OPUS4-21167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Bachelier, G. A1 - Wiggins, S. M. A1 - Siegel, J. A1 - Solis, J. A1 - Krüger, Jörg A1 - Sturm, Heinz T1 - Femtosecond laser ablation of indium phosphide in air: dynamical, structural and morphological evolution N2 - The irradiation of single-crystalline indium phosphide (c-InP) by Ti:sapphire femtosecond laser pulses (130 fs, 800 nm) in air is studied by means of in-situ time resolved reflectivity measurements [fs-time-resolved microscopy (100 fs-10 ns) and point probing analysis (ns - µs)] and by complementary ex-situ surface analytical methods (Micro Raman Spectroscopy, Scanning Force, and Optical Microscopy). The dynamics of melting, ablation, and optical breakdown as well as structural changes resulting from rapid solidification are investigated in detail. Different laser-induced surface morphologies are characterized and discussed on the basis of recent ablation and optical breakdown models. KW - Femtosecond laser ablation KW - Optical breakdown KW - Time-resolved measurements KW - Semiconductor KW - Indium phosphide PY - 2010 SN - 1454-4164 VL - 12 IS - 3 SP - 421 EP - 426 PB - INOE & INFM CY - Bucharest AN - OPUS4-21082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirner, Sabrina V. A1 - Hermens, U. A1 - Mimidis, A. A1 - Skoulas, E. A1 - Florian, C. A1 - Hischen, F. A1 - Plamadeala, C. A1 - Baumgartner, W. A1 - Winands, K. A1 - Mescheder, H. A1 - Krüger, Jörg A1 - Solis, J. A1 - Siegel, J. A1 - Stratakis, E. A1 - Bonse, Jörn T1 - Mimicking bug-like surface structures and their fluid transport produced by ultrashort laser pulse irradiation of steel N2 - Ultrashort laser pulses with durations in the fs-to-ps range were used for large area surface processing of steel aimed at mimicking the morphology and extraordinary wetting behaviour of bark bugs (Aradidae) found in nature. The processing was performed by scanning the laser beam over the surface of polished flat sample surfaces. A systematic variation of the laser processing parameters (peak fluence and effective number of pulses per spot diameter) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, i.e., LIPSS, grooves, spikes, etc.). Moreover, different laser processing strategies, varying laser wavelength, pulse duration, angle of incidence, irradiation atmosphere, and repetition rates, allowed to achieve a range of morphologies that resemble specific structures found on bark bugs. For identifying the ideal combination of parameters for mimicking bug-like structures, the surfaces were inspected by scanning electron microscopy. In particular, tilted micrometre-sized spikes are the best match for the structure found on bark bugs. Complementary to the morphology study, the wetting behaviour of the surface structures for water and oil was examined in terms of philic/ phobic nature and fluid transport. These results point out a route towards reproducing complex surface structures inspired by nature and their functional response in technologically relevant materials. KW - Biomometics KW - Surface wetting KW - Steel KW - Bug KW - Laser-induced periodic surface structures KW - Fluid transport KW - Femtosecond laser ablation PY - 2017 U6 - https://doi.org/10.1007/s00339-017-1317-3 SN - 0947-8396 SN - 1432-0630 VL - 123 IS - 12 SP - 754, 1 EP - 13 AN - OPUS4-42817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -