TY - CONF A1 - Geier, M. A1 - Eberstein, M. A1 - Grießmann, H. A1 - Partsch, U. A1 - Völkel, L. A1 - Böhme, R. A1 - Mann, Guido A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Impact of laser treatment on phosphoric acid coated multicrystalline silicon PV-wafers N2 - The selective emitter is a well-known technology for producing highly doped areas under the metallization grid to improve the solar cell performance. In this work, the influence of laser irradiation on phosphoric acid coated multicrystalline silicon PV-wafers on the wafer surface structure, the phosphorous depth distribution and the electrical contact resistance within the laser treated area as well as the electrical series resistance of laserprocessed solar cells was evaluated. Different laser processing settings were tested including pulsed and continuous wave (cw) laser sources (515 nm, 532 nm, 1064 nm wavelength). Complementary numerical simulations using the finite element method (FEM) were conducted to explain the impact of the laser parameters on the melting behavior (melt duration and geometry). It was found that the melt duration is a key parameter for a successful laser Doping process. Our simulations at a laser wavelengths of 515 nm reveal that low-repetition rate (<500 kHz) laser pulses of 300 ns duration generate a melt duration of ~0.35 µs, whereas upon scanning cw-laser radiation at 532 nm prolongates the melt duration by at least one order of magnitude. Experimentally, the widely used ns-laser pulses did not lead to satisfying laser irradiation results. In contrast, cw-laser radiation and scan velocities of less than 2 m/s led to suitable laser doping featuring low electrical resistances in the laser treated areas. T2 - 26th European photovoltaic solar energy conference and exhibition CY - Hamburg, Germany DA - 05.09.2011 KW - Silicon solar cell KW - Selective emitter KW - Laser processing KW - Doping KW - Simulation PY - 2011 SN - 3-936338-27-2 U6 - https://doi.org/10.4229/26thEUPVSEC2011-2BV.1.7 SP - 1243 EP - 1247 AN - OPUS4-24995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberstein, M. A1 - Geier, M. A1 - Grießmann, H. A1 - Partsch, U. A1 - Voelkel, L. A1 - Böhme, R. A1 - Pentzien, Simone A1 - Koter, Robert A1 - Mann, Guido A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Towards an industrial laser doping process for the selective emitter using phosphoric acid as dopant N2 - Different laser supported approaches have already been realized, proving the great potential of laserdoped selective emitters (LDSE). However, it is challenging to establish a low-cost process by using pulsed laser tools. So far a single-step process only leads to satisfying results utilizing cw-lasers. In this paper we have examined a two-step process to produce laser-doped selective emitters on multicrystalline textured standard silicon photovoltaic wafers (90-Ω/sq-Emitter, SiN-antireflection coating (ARC)). The precise ARC removal by near-infrared fs-laser pulses (30 fs, 800 nm), and the doping of uncoated silicon wafers by ns-laser pulses (8 ns, 532 nm) were systematically investigated. In the fs-experiment, optimum conditions for ARC removal were identified. In the nsexperiments under suitable conditions (melting regime), the phosphorous concentration underneath the wafer surface was significantly increased and the sheet resistance was reduced by nearly a factor of two. Moreover, electrical measurements on fired metallization fingers deposited on the laser processed wafers showed low contact resistances. Hence, wafer conditioning with combined fs-laser- and ns-laser-processes are expected to be a promising technology for producing selective emitters. T2 - 26th European photovoltaic solar energy conference and exhibition CY - Hamburg, Germany DA - 05.09.2011 KW - Laser processing KW - Doping KW - Selective emitter KW - Multicrystalline silicon PY - 2011 SN - 3-936338-27-2 U6 - https://doi.org/10.4229/26thEUPVSEC2011-2BV.1.2 SP - 1220 EP - 1223 AN - OPUS4-24996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, M. A1 - Schultz, C. A1 - Bonse, Jörn A1 - Pahl, H.-U. A1 - Endert, H. A1 - Rau, B. A1 - Schlatmann, R. A1 - Quaschning, V. A1 - Stegemann, B. A1 - Fink, F. T1 - Laser-ablation behavior of thin-film materials used in silicon and CIGSe based solar cells N2 - Structuring of thin-film photovoltaic modules requires basic knowledge of the laser – thin-film interaction in order to adapt the accessible laser parameters, like wavelength, power, repetition rate and scribing speed whilst taking into account the specific material properties of the layer. We have studied the nanosecond laserablation behavior of corresponding layers (i) of silicon based thin-film solar cells with a-Si/µc-Si tandem absorber type and (ii) of back contact and absorber layer of CIGSe solar cells. The respective ablation threshold fluences were determined as integrative parameters describing the specific laser – material interaction. For the threshold determination we used two different methods and developed a new analytical approach taking into account scribing through the glass substrate as it is preferred for most structuring processes. This was done by analyzing the thin film ablation results by means of optical microscopy, profilometry, scanning electron microscopy (SEM). Moreover, we determined the incubation coefficient of the regarded material layers which allows us to predict quantitatively the influence of the spot overlap on the scribing threshold. T2 - 26th European photovoltaic solar energy conference and exhibition CY - Hamburg, Germany DA - 05.09.011 KW - Laser processing KW - Ablation KW - Incubation KW - a-Si/my-Si KW - CIGS PY - 2011 SN - 3-936338-27-2 U6 - https://doi.org/10.4229/26thEUPVSEC2011-3DV.2.8 SP - 2943 EP - 2946 AN - OPUS4-24997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schultz, C. A1 - Schüle, M. A1 - Richter, M. A1 - Pahl, H.-U. A1 - Endert, H. A1 - Bonse, Jörn A1 - Dirnstorfer, I. A1 - Rau, B. A1 - Schlatmann, R. A1 - Quaschning, V. A1 - Fink, F. A1 - Stegemann, B. T1 - P1, P2 and P3 structuring of CIGSe solar cells with a single laser wavelength N2 - Manufacturing of CIGSe thin film solar modules involves typically one laser structuring step (P1) and two mechanical structuring steps (P2 and P3) for serial interconnection. In our approach, complete laser structuring is successfully demonstrated by application of short nanosecond laser pulses (<10 ns) with a single, visible wavelength of 532 nm. The P1 and the P3 trenches are scribed by induced and direct ablation, respectively. For the P2 scribe, the thermal input of the ns laser pulses is used to transform the CIGSe absorber layer locally into a highly conductive compound to provide proper electrical interconnection. These findings promise further simplification and flexibility to thin film solar cell production. T2 - 26th European photovoltaic solar energy conference and exhibition CY - Hamburg, Germany DA - 05.09.2011 KW - Laser processing KW - Nanosecond pulses KW - Ablation KW - Cu(InGa)Se2 KW - Electrical properties PY - 2011 SN - 3-936338-27-2 U6 - https://doi.org/10.4229/26thEUPVSEC2011-3AV.1.35 SP - 2540 EP - 2543 AN - OPUS4-24998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -