TY - JOUR A1 - Bonse, Jörn A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses N2 - The formation of nearly wavelength-sized laser-induced periodic surface structures (LIPSSs) on single-crystalline silicon upon irradiation with single or multiple femtosecond-laser pulses (pulse duration τ=130 fs and central wavelength λ=800 nm) in air is studied experimentally and theoretically. In our theoretical approach, we model the LIPSS formation by combining the generally accepted first-principles theory of Sipe and co-workers with a Drude model in order to account for transient intrapulse changes in the optical properties of the material due to the excitation of a dense electron-hole plasma. Our results are capable to explain quantitatively the spatial periods of the LIPSSs being somewhat smaller than the laser wavelength, their orientation perpendicular to the laser beam polarization, and their characteristic fluence dependence. Moreover, evidence is presented that surface plasmon polaritons play a dominant role during the initial stage of near-wavelength-sized periodic surface structures in femtosecond-laser irradiated silicon, and it is demonstrated that these LIPSSs can be formed in silicon upon irradiation by single femtosecond-laser pulses. KW - Ab initio calculations KW - Elemental semiconductors KW - High-speed optical techniques KW - Laser beam effects KW - Polaritons KW - Silicon KW - Solid-state plasma KW - Surface plasmons KW - Surface structure PY - 2009 U6 - https://doi.org/10.1063/1.3261734 SN - 0021-8979 SN - 1089-7550 VL - 106 IS - 10 SP - 104910-1 - 104910-5 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-20453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Rosenfeld, A. A1 - Grebing, C. A1 - Steinmeyer, G. A1 - Mailman, N. A1 - Botton, G.A. A1 - Haugen, H.K. T1 - Ablation and structural changes induced in InP surfaces by single 10 fs laser pulses in air N2 - Ablation of single-crystalline (100) indium phosphide wafer surfaces with single 10 fs Ti:sapphire laser pulses in air has been studied by means of complementary cross-sectional transmission electron microscopy, scanning force microscopy, and optical microscopy. A local protrusion of ~70 nm height is generated within the ablation craters for fluences exceeding 0.78 J/cm². This morphological feature has been studied in detail, revealing the material structure of the laser-affected zone and its spatial extent. The resolidified layer (60-200 nm thick) consists of polycrystalline grains (5-15 nm diameter) and is covered by an ~10 nm thick amorphous top layer. Interestingly, the sharp boundary of the solidified layer to the unaffected crystal underneath exhibits a Gaussian-like shape and does not follow the shape of the surface topography. Evidence is presented that the central crater protrusion is formed by near-surface optical breakdown, and that the absorption in the material transiently changes during the femtosecond-laser pulse. KW - Femtosecond laser ablation KW - Optical breakdown KW - Transmission electron microscopy KW - Semiconductor KW - Indium phosphide KW - Scanning force microscopy KW - Time-resolved measurements PY - 2009 UR - http://link.aip.org/link/?JAPIAU/106/074907/1 U6 - https://doi.org/10.1063/1.3236630 SN - 0021-8979 SN - 1089-7550 VL - 106 SP - 074907-1 - 074907-7 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-20083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -