TY - JOUR A1 - Derrien, Thibault A1 - Krüger, Jörg A1 - Itina, T.E. A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Bonse, Jörn T1 - Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon JF - Optics express N2 - The formation of near-wavelength laser-induced periodic surface structures (LIPSS) on silicon upon irradiation with sequences of Ti:sapphire femtosecond laser pulse pairs (pulse duration 150 fs, central wavelength 800 nm) is studied theoretically. For this purpose, the nonlinear generation of conduction band electrons in silicon and their relaxation is numerically calculated using a two-temperature model approach including intrapulse changes of optical properties, transport, diffusion and recombination effects. Following the idea that surface plasmon polaritons (SPP) can be excited when the material turns from semiconducting to metallic state, the 'SPP active area' is calculated as function of fluence and double-pulse delay up to several picoseconds and compared to the experimentally observed rippled surface areas. Evidence is presented that multi-photon absorption explains the large increase of the rippled area for temporally overlapping pulses. For longer double-pulse delays, relevant relaxation processes are identified. The results demonstrate that femtosecond LIPSS on silicon are caused by the excitation of SPP and can be controlled by temporal pulse shaping. PY - 2013 DO - https://doi.org/10.1364/OE.21.029643 SN - 1094-4087 VL - 21 IS - 24 SP - 29643 EP - 29655 PB - Optical Society of America CY - Washington, DC AN - OPUS4-29650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Derrien, Thibault A1 - Koter, Robert A1 - Krüger, Jörg A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Bonse, Jörn T1 - Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water JF - Journal of applied physics N2 - The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon by multiple (N = 100) linearly polarized Ti:sapphire femtosecond laser pulses (duration τ = 30 fs, center wavelength λ0 ~ 790 nm) is studied experimentally in air and water environment. The LIPSS surface morphologies are characterized by scanning electron microscopy and their spatial periods are quantified by two-dimensional Fourier analyses. It is demonstrated that the irradiation environment significantly influences the periodicity of the LIPSS. In air, so-called low-spatial frequency LIPSS (LSFL) were found with periods somewhat smaller than the laser wavelength (ΛLSFL ~ 0.7 × λ0) and an orientation perpendicular to the laser polarization. In contrast, for laser processing in water a reduced ablation threshold and LIPSS with approximately five times smaller periods ΛLIPSS ~ 0.15 × λ0 were observed in the same direction as in air. The results are discussed within the frame of recent LIPSS theories and complemented by a thin film based surface plasmon polariton model, which successfully describes the tremendously reduced LIPSS periods in water. PY - 2014 DO - https://doi.org/10.1063/1.4887808 SN - 0021-8979 SN - 1089-7550 VL - 116 IS - 7 SP - 074902-1 EP - 074902-8 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-31209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Derrien, Thibault A1 - Krüger, Jörg A1 - Itina, T.E. A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Bonse, Jörn T1 - Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes JF - Applied physics A N2 - The formation of laser-induced periodic surface structures (LIPSS, ripples) upon irradiation of silicon with multiple irradiation sequences consisting of femtosecond laser pulse pairs (pulse duration 150 fs, central wavelength 800 nm) is studied numerically using a rate equation system along with a two-temperature model accounting for one- and two-photon absorption and subsequent carrier diffusion and Auger recombination processes. The temporal delay between the individual equal-energy fs-laser pulses was varied between 0 and ~4 ps for quantification of the transient carrier densities in the conduction band of the laser-excited silicon. The results of the numerical analysis reveal the importance of carrier generation and relaxation processes in fs-LIPSS formation on silicon and quantitatively explain the two time constants of the delay-dependent decrease of the low spatial frequency LIPSS (LSFL) area observed experimentally. The role of carrier generation, diffusion and recombination is quantified individually. PY - 2014 DO - https://doi.org/10.1007/s00339-013-8205-2 SN - 0947-8396 VL - 117 IS - 1 SP - 77 EP - 81 PB - Springer CY - Berlin AN - OPUS4-31451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -