TY - JOUR A1 - Kraft, Sebastian A1 - Schille, J. A1 - Bonse, Jörn A1 - Löschner, U. A1 - Krüger, Jörg T1 - X‑ray emission during the ablative processing of biological materials by ultrashort laser pulses N2 - The ablative laser processing with ultrashort pulsed laser beams may cause secondary emission of hazardous X-rays. While the effect has recently been proven to be considered in working safety regulations when processing technical materials, such as metals, the X-ray emission rates during the ablative processing of biological tissue materials are widely unexplored yet. Therefore, biological materials like water, isotonic saline solution, pig eyes, and human teeth were ablated with ultrashort laser pulses of 1030 nm wavelength, 600 fs pulse duration and 5 kHz pulse repetition rate, aiming to mimic typical surgery situations. Simultaneously, in-situ X-ray dose rate measurements were performed at a short distance from the plasma to display potential X-ray emission. For all four studied biological materials, our measurements prove the secondary emission of laser-induced X-rays. KW - Ultrashort pulsed laser KW - Laser-induced X-ray emission KW - Ophthalmology KW - Dentistry KW - Secondary hazard PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569960 DO - https://doi.org/10.1007/s00339-023-06440-4 SN - 0947-8396 VL - 129 IS - 3 SP - 1 EP - 8 PB - Springer AN - OPUS4-56996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - X-ray radiation protection aspects during ultrashort laser processing N2 - Ultrashort pulse laser processing of materials allows for precise machining with high accuracy. By increasing the repetition rate to several 100 kHz, laser machining becomes quick and cost-effective. Ultrafast laser processing at high repetition rates and peak intensities above 10^13 W/cm^2 can cause a potential hazard by generation of unwanted x-ray radiation. Therefore, radiation protection must be considered. For 925 fs pulse duration at a center wavelength of 1030 nm, the x-ray emission in air at a repetition rate of 400 kHz was investigated up to a peak intensity of 2.6 × 10^14 W/cm^2. Based on the presented measurements, the properties of potential shielding materials will be discussed. By extending our previous works, a scaling of the x-ray radiation emission to higher peak intensities up to 10^15 W/cm^2 is described, and emitted x-ray doses are predicted. KW - Laser ablation KW - Ultrashort pulse laser processing KW - Laser-induced x-ray emission KW - Radiation protection PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505677 DO - https://doi.org/10.2351/1.5134778 VL - 32 IS - 2 SP - 022004 AN - OPUS4-50567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stolzenberg, U. A1 - Schmitt Rahner, M. A1 - Pullner, B. A1 - Legall, Herbert A1 - Bonse, Jörn A1 - Kluge, M. A1 - Ortner, A. A1 - Hoppe, B. A1 - Krüger, Jörg T1 - X-ray emission hazards from ultrashort pulsed laser material processing in an industrial setting N2 - Interactions between ultrashort laser pulses with intensities larger than 10^13 W/cm^2 and solids during material processing can lead to the emission of X-rays with photon energies above 5 keV, causing radiation hazards to operators. A framework for inspecting X-ray emission hazards during laser material processing has yet to be developed. One requirement for conducting radiation protection inspections is using a reference scenario, i.e., laser settings and process parameters that will lead to an almost constant and high level of X-ray emissions. To study the feasibility of setting up a reference scenario in practice, ambient dose rates and photon energies were measured using traceable measurement equipment in an industrial setting at SCHOTT AG. Ultrashort pulsed (USP) lasers with a maximum average power of 220 W provided the opportunity to measure X-ray emissions at laser peak intensities of up to 3.3 × 10^15 W/cm^2 at pulse durations of ~1 ps. The results indicate that increasing the laser peak intensity is insufficient to generate high dose rates. The investigations were affected by various constraints which prevented measuring high ambient dose rates. In this work, a list of issues which may be encountered when performing measurements at USP-laser machines in industrial settings is identified. KW - X-ray emission hazards KW - Ultrashort pulsed laser KW - Radiation protection KW - Industrial applications KW - Protection housing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538632 DO - https://doi.org/10.3390/ma14237163 SN - 1996-1944 VL - 14 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-53863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Pentzien, Simone A1 - Dittmar, G. A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - X-ray emission as a potential hazard during ultrashort pulse laser material processing N2 - In laser machining with ultrashort laser pulses unwanted X-ray radiation in the keV range can be generated when a critical laser intensity is exceeded. Even if the emitted X-ray dose per pulse is low, high laser repetition rates can lead to an accumulation of X-ray doses beyond exposure safety limits. For 925 fs pulse duration at a center wavelength of 1030 nm, the X-ray emission was investigated up to an intensity of 2.6 × 10^14 W/cm2. The experiments were performed in air with a thin disk laser at a repetition rate of 400 kHz. X-ray spectra and doses were measured for various planar target materials covering a wide range of the periodic table from aluminum to tungsten. Without radiation shielding, the measured radiation doses at this high repetition rate clearly exceed the regulatory limits. Estimations for an adequate radiation shielding are provided. KW - Laser-induced X-ray emission KW - Ultrashort laser material interaction KW - Femtosecond laser KW - Radiation protection PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-448431 DO - https://doi.org/10.1007/s00339-018-1828-6 SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 6 SP - Article 407, 1 EP - 8 PB - Springer AN - OPUS4-44843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böttcher, Katrin A1 - Schmitt Rahner, M. A1 - Stolzenberg, U. A1 - Kraft, Sebastian A1 - Bonse, Jörn A1 - Feist, C. A1 - Albrecht, D. A1 - Pullner, B. A1 - Krüger, Jörg T1 - Worst-case X-ray photon energies in ultrashort pulse laser processing N2 - Ultrashort pulse laser processing can result in the secondary generation of unwanted X-rays if a critical laser irradiance of about 10^13 W/cm^2 is exceeded. Spectral X-ray emissions were investigated during the processing of tungsten and steel using three complementary spectrometers (based on CdTe and silicon drift detectors) simultaneously for the identification of a worst-case spectral scenario. Therefore, maximum X-ray photon energies were determined, and corresponding dose equivalent rates were calculated. An ultrashort pulse laser workstation with a pulse duration of 274 fs, a center wavelength of 1030 nm, pulse repetition rates between 50 kHz and 200 kHz, and a Gaussian laser beam focused to a spot diameter of 33 µm was employed in a single pulse and burst laser operation mode. Different combinations of laser pulse energy and repetition rate were utilized, keeping the average laser power constant close to the maximum power of 20 W. Peak irradiances ranging from 7.3 × 10^13 W/cm^2 up to 3.0 × 10^14 W/cm^2 were used. The X-ray dose equivalent rate increases for lower repetition rates and higher pulse energy if a constant average power is used. Laser processing with burst mode significantly increases the dose rates and the X-ray photon energies. A maximum X-ray photon energy of about 40 keV was observed for burst mode processing of tungsten with a repetition rate of 50 kHz and a peak irradiance of 3 × 10^14 W/cm^2. KW - Ultrashort pulsed laser KW - X-ray emission KW - X-ray spectrum KW - X-ray energies KW - Radiation protection PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566176 DO - https://doi.org/10.3390/ma15248996 VL - 15 IS - 24 SP - 1 EP - 17 PB - MDPI AN - OPUS4-56617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirner, Sabrina V. A1 - Slachciak, Nadine A1 - Elert, Anna Maria A1 - Griepentrog, Michael A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Sahre, Mario A1 - Dörfel, Ilona A1 - Sturm, Heinz A1 - Pentzien, Simone A1 - Koter, Robert A1 - Spaltmann, Dirk A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Tribological performance of titanium samples oxidized by fs-laser radiation, thermal heating, or electrochemical anodization N2 - Commercial grade-1 titanium samples (Ti, 99.6%) were treated using three alternative methods, (i) femtosecond laser processing, (ii) thermal heat treatment, and (iii) electrochemical anodization, respectively, resulting in the formation of differently conditioned superficial titanium oxide layers. The laser processing (i) was carried out by a Ti:sapphire laser (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz) in a regime of generating laser-induced periodic surface structures (LIPSS). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning setup for the processing of several square-millimeters large surface areas covered homogeneously by these nanostructures. The differently oxidized titanium surfaces were characterized by optical microscopy, micro Raman spectroscopy, variable angle spectroscopic ellipsometry, and instrumented indentation testing. The tribological performance was characterized in the regime of mixed friction by reciprocating sliding tests against a sphere of hardened steel in fully formulated engine oil as lubricant. The specific tribological performance of the differently treated surfaces is discussed with respect to possible physical and chemical mechanisms. KW - Femtosecond laser KW - Titanium KW - Oxidation KW - Friction PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-445609 DO - https://doi.org/10.1007/s00339-018-1745-8 SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 4 SP - 326, 1 EP - 10 PB - Springer-Verlag AN - OPUS4-44560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kunz, C. A1 - Bonse, Jörn A1 - Spaltmann, Dirk A1 - Neumann, C. A1 - Turchanin, A. A1 - Bartolomé, J. F. A1 - Müller, F. A. A1 - Gräf, S. T1 - Tribological performance of metal-reinforced ceramic composites selectively structured with femtosecond laser-induced periodic surface structures N2 - The impact of femtosecond (fs) laser-induced periodic surface structures (LIPSS) on tribological properties was investigated for metal-reinforced ceramic composites (Al2O3-ZrO2-Nb). For this purpose, the metallic niobium (Nb) phase was selectively structured with LIPSS in an air environment with different values of the fs-laser peak fluence by near-infrared fs-laser radiation (λ = 1025 nm, τ = 300 fs, frep = 1 kHz), taking advantage of the different light absorption behavior of ceramic and metal. The tribological performance was evaluated by reciprocating sliding tests in a ball-on-disc configuration using Ringer's solution as lubricant. The surfaces were characterized before and after laser irradiation by optical microscopy, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and by measuring the contact angle with Ringer's solution. The LIPSS formation resulted in an increased wetting of the surface with the lubricant. Moreover, the selectively structured composite surfaces revealed a coefficient of friction significantly reduced by a factor of ~3 when compared to the non-irradiated surface. Furthermore, the formation of a laser-induced oxidation layer was detected with NbO as the most prominent oxidation state. Selectively structured composites with outstanding mechanical properties and enhanced tribological performance are of particular interest for biomedical applications. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Ceramic matrix composites KW - Tribology PY - 2020 DO - https://doi.org/10.1016/j.apsusc.2019.143917 SN - 0169-4332 SN - 1873-5584 VL - 499 IS - 1 SP - 143917 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-49255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Seuthe, T. A1 - Grehn, M. A1 - Eberstein, M. A1 - Rosenfeld, A. A1 - Mermillod-Blondin, A. T1 - Time-resolved microscopy of fs-laser-induced heat flows in glasses N2 - Time-resolved phase-contrast microscopy is employed to visualize spatio-temporal thermal transients induced by tight focusing of a single Ti:sapphire fs-laser pulse into a solid dielectric sample. This method relies on the coupling of the refractive index change and the sample temperature through the thermo-optic coefficient dn/dT. The thermal transients are studied on a timescale ranging from 10 ns up to 0.1 ms after laser excitation. Beyond providing direct insights into the laser–matter interaction, analyzing the results obtained also enables quantifying the local thermal diffusivity of the sample on a micrometer scale. Studies conducted in different solid dielectrics, namely amorphous fused silica (a-SiO2), a commercial borosilicate glass (BO33, Schott), and a custom alkaline earth silicate glass (NaSi66), illustrate the applicability of this approach to the investigation of various glassy materials. KW - Femtosecond laser KW - Phase-contrast microscopy KW - Heat diffusion KW - Glasses PY - 2018 DO - https://doi.org/10.1007/s00339-017-1465-5 SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 1 SP - 60, 1 EP - 6 PB - Springer-Verlag AN - OPUS4-43739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Déziel, J.-L. A1 - Kirner, Sabrina V. A1 - Siegel, J. A1 - Bonse, Jörn T1 - The role of the laser-induced oxide layer in the formation of laser-induced periodic surface structures N2 - Laser-induced periodic surface structures (LIPSS) are often present when processing solid targets with linearly polarized ultrashort laser pulses. The different irradiation parameters to produce them on metals, semiconductors and dielectrics have been studied extensively, identifying suitable regimes to tailor its properties for applications in the fields of optics, medicine, fluidics and tribology, to name a few. One important parameter widely present when exposing the samples to the high intensities provided by these laser pulses in air environment, that generally is not considered, is the formation of a superficial laser-induced oxide layer. In this paper, we fabricate LIPSS on a layer of the oxidation prone hard-coating material chromium nitride in order to investigate the impact of the laser-induced oxide layer on its formation. A variety of complementary surface analytic techniques were employed, revealing morphological, chemical and structural characteristics of well-known high-spatial frequency LIPSS (HSFL) together with a new type of low-spatial frequency LIPSS (LSFL) with an anomalous orientation parallel to the laser polarization. Based on this input, we performed finite-difference time-domain calculations considering a layered system resembling the geometry of the HSFL along with the presence of a laser-induced oxide layer. The simulations support a scenario that the new type of LSFL is formed at the interface between the laser-induced oxide layer and the non-altered material underneath. These findings suggest that LSFL structures parallel to the polarization can be easily induced in materials that are prone to oxidation. KW - Laser-induced oxide layer KW - Laser-induced periodic surface structures (LIPSS) KW - Surface chemistry KW - Femtosecond laser processing KW - Nanostructuring PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502530 DO - https://doi.org/10.3390/nano10010147 SN - 2079-4991 VL - 10(1) IS - Special issue "Laser-generated periodic nanostructures" SP - 147-1 EP - 147-18 PB - MDPI CY - Basel AN - OPUS4-50253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - The influence of processing parameters on X‑ray emission during ultra‑short pulse laser machining N2 - During ultra-short laser material processing at high laser pulse repetition rates unwanted X-ray radiation can be generated in a quantity that may constitute a potential risk for health. An adequate X-ray radiation protection requires a thoroughly understanding of the influence of the laser processing parameters on the generation of X-ray radiation. In the present work, the generated X-ray dose during laser machining was investigated in air for varying beam scanning conditions at a pulse duration of 925 fs, a center wavelength of 1030 nm and a laser peak intensity of 2.6 × 10^14 W/cm^2. The X-ray radiation dose and the corresponding spectral X-ray emission were investigated in dependence on the laser’s pulse repetition rate and on the beam scanning speed. The results show a strong dependence of the X-ray emission on these laser processing parameters. KW - Laser-induced X-ray emission KW - Ultrashort laser material interaction KW - Femtosecond laser KW - Radiation protection PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486441 DO - https://doi.org/10.1007/s00339-019-2827-y SN - 0947-8396 SN - 1432-0630 VL - 125 IS - 8 SP - 570, 1 EP - 8 PB - Springer AN - OPUS4-48644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -