TY - CONF A1 - Bonse, Jörn A1 - Mezera, Marek A1 - Florian, Camilo A1 - Krüger, Jörg A1 - Gräf, S. T1 - Laser-induced periodic surface structures: When electromagnetics drives hydrodynamics N2 - Laser-induced Periodic Surface Structures (LIPSS, ripples) are a universal phenomenon and can be generated in a contactless, single-step process on almost any material upon irradiation of solids with intense laser radiation. Nowadays processing rates of up to m^2/min are enabling new industrial applications in medicine, optics, tribology, biology, etc. Depending on the specific type of LIPSS, their structural sizes typically range from several micrometers down to less than 100 nanometers – far beyond the optical diffraction limit – while their orientations exhibit a clear correlation with the local polarization direction of the laser radiation. From a theoretical point of view, however, a vivid, controversial, and long-lasting debate has emerged during the last two decades, whether LIPSS originate from electromagnetic effects (seeded already during the laser irradiation) – or whether they emerge from matter reorganization processes (distinctly after the laser irradiation). This presentation reviews the currently existent theories of LIPSS. A focus is laid on the historic development of the fundamental ideas, their corresponding mathematical descriptions and numerical implementations, along with a comparison and critical assessment of the different approaches. T2 - 28th International Conference on Advanced Laser Technologies (ALT'21) CY - Online meeting DA - 06.09.2021 KW - Laser-induced periodic surface structures, LIPSS KW - Electromagnetic scattering KW - Matter reorganization PY - 2021 DO - https://doi.org/10.24412/cl-35039-2021-21-25-25 AN - OPUS4-53218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - A survey of surface functionalization through laser-induced periodic surface structures N2 - Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon that can be observed on almost any material after the irradiation by linearly polarized laser beams, particularly when using ultrashort laser pulses with durations in the femtosecond to picosecond range. During the past few years significantly increasing research activities have been reported in the field of LIPSS, since their generation in a single-step process provides a simple way of nanostructuring and surface functionalization towards the control of optical, mechanical, biological, or chemical surface properties. In this contribution the mechanisms of formation and current applications of LIPSS are reviewed, including the colorization of technical surfaces, the control of surface wetting properties, the mimicry of the natural texture of animal integuments, the tailoring of surface colonization by bacterial biofilms, the advancement of medical pacemakers, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - Seminar, ALPhANOV - Centre Technologique Optique et Lasers CY - Talence, France DA - 07.06.2019 KW - Laser-induced periodic surface structures, LIPSS KW - Surface functionalization KW - Applications KW - Femtosecond laser PY - 2019 AN - OPUS4-48199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Florian, Camilo A1 - Kirner, Sabrina V. A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures: from light localization to applications N2 - This presentation reviews the current state in the field of Laser-induced Periodic Surface Structures (LIPSS). These surface nanostructures are a universal phenomenon and can be generated on almost any material by irradiation with intense linearly polarized laser radiation. LIPSS are formed in a “self-ordered” way and are often accompanying material processing applications. They can be produced following a single-step process and enable surface functionalization through the adaption of optical, mechanical and chemical surface properties. Their structural sizes typically range from several micrometers down to less than 100 nanometers exhibiting a clear correlation with the polarization direction of the laser radiation. Various types of surface structures are classified, relevant control parameters are identified, and their material specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics, through time-resolved optical experiments and theoretical simulations. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. T2 - International Conference on Advanced Laser Technologies (ALT'19) CY - Prague, Czech Republic DA - 15.09.2019 KW - Laser-induced periodic surface structures, LIPSS KW - Femtosecond laser KW - Surface functionalization KW - Electromagnetic scattering PY - 2019 AN - OPUS4-49098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Rudenko, A. A1 - Déziel, J.-L. A1 - Florian, Camilo A1 - Krüger, Jörg A1 - Colombier, J.-P. T1 - The role of scattering in the formation of laserinduced periodic surface structures (LIPSS) N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon that is accompanying laser materials processing. These surface nanostructures pave a simple way for surface functionalization with numerous applications in optics, fluidics, tribology, medicine, etc. This contribution reviews the current view on the role of electromagnetic scattering in the formation of LIPSS. T2 - Workshop on Theoretical and Numerical Tools for Nanophotonics (TNTN 2020) CY - Berlin, Germany DA - 12.02.2020 KW - Laser-induced periodic surface structures, LIPSS KW - Electromagnetic scattering KW - Finite-difference time-domain calculations PY - 2020 AN - OPUS4-50399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Höhm, S. A1 - Derrien, Thibault J.-Y. A1 - Krüger, Jörg T1 - Laser-induced periodic surface nanostructures N2 - This presentation reviews the current state in the field of Laser-induced Periodic Surface Structures (LIPSS). These surface nanostructures are a universal phenomenon and can be generated on almost any material by irradiation with intense linearly polarized radiation. LIPSS are formed in a “self-ordered” way and are often accompanying material processing applications. They can be produced in a single-step process and enable surface functionalization through the adaption of optical, mechanical and chemical surface properties. Their structural sizes typically range from several micrometers down to less than 100 nanometers and show a clear correlation with the polarization direction of the laser radiation. Various types of surface structures are classified, relevant control parameters are identified, and their material specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics, through time-resolved optical experiments and theoretical simulations. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. T2 - International Symposium “Fundamentals of Laser Assisted Micro- and Nanotechnologies” (FLAMN-19) CY - St. Petersburg, Russia DA - 30.06.2019 KW - Laser-induced periodic surface structures, LIPSS KW - Femtosecond laser KW - Surface functionalization KW - Ultrafast scattering PY - 2019 AN - OPUS4-48420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Wirth, Thomas A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Chemical effects in the formation of fs-laser-induced periodic surface structures N2 - The processing of laser-induced periodic surface structures (LIPSS, ripples) on metals and semiconductors in ambient air is usually accompanied by superficial oxidation effects - widely neglected in the current literature. In this contribution, chemical, structural, and mechanical alterations in the formation of femtosecond LIPSS are characterized by a variety of surface analytical techniques, including energy dispersive X-ray analyses (EDX), X-ray photoelectron spectroscopy (XPS), micro Raman spectroscopy (µ-RS), and depth-profiling Auger electron microscopy (AEM). Alternative routes of electrochemical and thermal oxidation allow to qualify the relevance of superficial oxidation effects on the tribological performance in oil lubricated reciprocating sliding tribological tests (RSTT). It is revealed that the fs-laser processing of near-wavelength sized LIPSS on metals leads to the formation of a few hundreds of nanometer thick graded oxide layer, consisting mainly of amorphous oxides. Regardless of its reduced hardness and limited thickness, this nanostructured surface layer can effciently prevent a direct metal-metal contact in the RSTT and may also act as an anchor layer for specific wear-reducing additives contained in the engine oil involved T2 - 8th International LIPSS Workshop CY - Bochum, Germany DA - 27.09.2018 KW - Laser-induced periodic surface structures, LIPSS KW - Femtosecond KW - Oxidation KW - Tribology PY - 2018 AN - OPUS4-46106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Höhm, S. A1 - Koter, Robert A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium JF - Applied Surface Science N2 - Sub-100-nm laser-induced periodic surface structures (LIPSS) were processed on bulk titanium (Ti) surfaces by femtosecond laser pulse irradiation in air (30 fs pulse duration, 790 nm wavelength). The laser peak fluence, the spatial spot overlap, and the number of overscans were optimized in a sample-scanning geometry in order to obtain large surface areas (5 mm × 5 mm) covered homogeneously by the LIPSS. The laser-processed regions were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). The friction coefficient of the nanostructured surfaces was tested during 1000 cycles under reciprocal sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel, both in paraffin oil and in engine oil used as lubricants. Subsequently, the corresponding wear tracks were qualified by OM, SEM, and energy dispersive X-ray analyses (EDX). The results of the tribological tests are discussed and compared to that obtained for near wavelength-sized fs-LIPSS, processed under somewhat different irradiation conditions. Some constraints for a beneficial effect of LIPSS on the tribological performance are provided. KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures, LIPSS KW - Friction KW - Wear KW - Nanostructures KW - Surface functionalization PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0169433215026987 DO - https://doi.org/10.1016/j.apsusc.2015.11.019 SN - 0169-4332 SN - 1873-5584 VL - 374 SP - 190 EP - 196 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-35937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Laser-induced periodic surface structures on zinc oxide crystals upon two-colour femtosecond double-pulse irradiation JF - Physica Scripta N2 - In order to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS) on single-crystalline zinc oxide (ZnO), two-colour double-fs-pulse experiments were performed. Parallel or cross-polarised double-pulse sequences at 400 and 800 nm wavelength were generated by a Mach–Zehnder interferometer, exhibiting inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Twenty two-colour double-pulse sequences were collinearly focused by a spherical mirror to the sample surface. The resulting LIPSS periods and areas were analysed by scanning electron microscopy. The delay-dependence of these LIPSS characteristics shows a dissimilar behaviour when compared to the semiconductor silicon, the dielectric fused silica, or the metal titanium. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS on ZnO when considering multi-photon excitation processes. Our results support the involvement of nonlinear processes for temporally overlapping pulses. These experiments extend previous two-colour studies on the indirect semiconductor silicon towards the direct wide band-gap semiconductor ZnO and further manifest the relevance of the ultrafast energy deposition for LIPSS formation. KW - Laser-induced periodic surface structures, LIPSS KW - Laser ablation KW - Surface plasmon polariton PY - 2017 DO - https://doi.org/10.1088/1402-4896/aa5578 SN - 1402-4896 SN - 0031-8949 VL - 92 IS - 3 SP - Article 034003, 1 EP - 7 PB - IOP CY - Bristol, UK AN - OPUS4-39082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lone, S. A. A1 - Muck, M. A1 - Fosodeder, P. A1 - Mardare, C.C. A1 - Florian, Camilo A1 - Weth, A. A1 - Krüger, Jörg A1 - Steinwender, C. A1 - Baumgartner, W. A1 - Bonse, Jörn A1 - Heitz, J. A1 - Hassel, A.W. T1 - Impact of Femtosecond Laser Treatment Accompanied with Anodization of Titanium Alloy on Fibroblast Cell Growth JF - Physica Status Solidi A N2 - Herein, Ti6Al4V alloy is surface modified by femtosecond laser ablation. The microstructure image obtained by secondary electron microscopy reveals a combination of micrometer spikes or cones superimposed by nanoripples (laser‐induced periodic surface structures). To make the surface hydrophilic, anodization is performed resulting in further smoothness of microstructure and a final thickness of 35 ± 4 nm is estimated for oxide produced after anodization at 10 V (scan rate = 0.1 V s−1) versus standard hydrogen electrode. The obtained electrochemically active surface area (ECSA) is approximately 8 times larger compared with flat mirror polished Ti6Al4V surface. Combined chemical analysis by Pourbaix diagram and X‐ray photoelectron spectroscopy (XPS) analyses reveal that titanium and aluminum are passivating into TiO2 and Al2O3, but the dissolution of aluminum in the form of solvated ion is inevitable. Finally, cell seeding experiments on anodized and laser‐treated titanium alloy samples show that the growth of murine fibroblast cells is significantly suppressed due to unique surface texture of the laser‐treated and anodized titanium alloy sample. KW - Anodization KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures, LIPSS KW - Ti6Al4V alloys KW - X-ray photoelectron spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510263 DO - https://doi.org/https://doi.org/10.1002/pssa.201900838 SN - 1862-6300 SN - 1862-6319 VL - 217 IS - 13 SP - 1900838-1 EP - 1900838-9 PB - WILEY-VCH Verlag CY - Weinheim, Germany AN - OPUS4-51026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Mezera, Marek A1 - Florian, C. A1 - Römer, G.-W. A1 - Krüger, Jörg A1 - Bonse, Jörn ED - Stoian, R. ED - Bonse, Jörn T1 - Creation of Material Functions by Nanostructuring T2 - Ultrafast Laser Nanostructuring — The Pursuit of Extreme Scales N2 - Surface nanostructures provide the possibility to create and tailor surface functionalities mainly via controlling their topography along with other chemical and physical material properties. One of the most appealing technologies for surface functionalization via micro- and nanostructuring is based on laser processing. This can be done either via direct contour-shaping of the irradiated material using a tightly focused laser beam or in a self-ordered way that allows employing larger laser beam diameters along with areal scanning to create a variety of laser-induced periodic surface structures (LIPSS). For the latter approach, particularly ultrashort pulsed lasers have recently pushed the borders across long-lasting limitations regarding the minimum achievable feature sizes and additionally boosted up the production times. This chapter reviews the plethora of recently investigated applications of LIPSS—for example, via imposing diffractive or plasmonic structural colors, the management of liquids and surface wetting properties, biomedical and bioinspired functionalities, beneficial effects in tribology for reducing friction and wear, the manipulation of optical scattering and absorption in photovoltaics, or the modification of magnetic or superconducting surface properties in other energy applications. The footprint of the LIPSS-based technology is explored in detail regarding the current state of industrialization, including an analysis of the market and associated LIPSS production costs. KW - Laser-induced periodic surface structures, LIPSS KW - Surface functionalization KW - Nanostructures KW - Microstructures KW - Laser processing PY - 2023 SN - 978-3-031-14751-7 SN - 978-3-031-14752-4 DO - https://doi.org/10.1007/978-3-031-14752-4_23 VL - 239 SP - 827 EP - 886 PB - Springer Nature Switzerland AG CY - Cham, Switzerland AN - OPUS4-57295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -