TY - JOUR A1 - Abere, M. J. A1 - Zhong, M. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Ultrafast laser-induced morphological transformations JF - MRS Bulletin N2 - Ultrafast laser processing can be used to realize various morphological surface transformations, ranging from direct contour shaping to large-area-surface functionalization via the generation of “self-ordered” micro- and nanostructures as well as their hierarchical hybrids. Irradiation with high-intensity laser pulses excites materials into extreme conditions, which then return to equilibrium through these unique surface transformations. In combination with suitable top-down or bottom-up manufacturing strategies, such laser-tailored surface morphologies open up new avenues toward the control of optical, chemical, and mechanical surface properties, featuring various technical applications especially in the fields of photovoltaics, tribology, and medicine. This article reviews recent efforts in the fundamental understanding of the formation of laser-induced surface micro- and nanostructures and discusses some of their emerging capabilities. KW - Laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Surface morphology KW - Oxidation KW - Tribology PY - 2016 DO - https://doi.org/10.1557/mrs.2016.271 SN - 0883-7694 SN - 1938-1425 VL - 41 IS - 12 SP - 969 EP - 974 PB - Cambride University Press AN - OPUS4-38637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Andree, Stefan A1 - Heidmann, B. A1 - Ringleb, F. A1 - Eylers, K. A1 - Bonse, Jörn A1 - Boeck, T. A1 - Schmid, M. A1 - Krüger, Jörg T1 - Femtosecond laser pulses for photovoltaic bottom-up strategies T2 - Tagungsband zur 10. Mittweidaer Lasertagung N2 - A promising technology in photovoltaics is based on micro-concentrator solar cells, where the photovoltaic active area is realized as an array of sub-millimeter sized cells onto which the incident light is focused via microlenses. This approach allows to increase the cell efficiency and to realize much more compact modules compared to macroscopic concentrator devices. At the same time, expensive raw materials can be saved, which is of interest, for example, with respect to indium in the case of copper-indium-gallium-diselenide (CIGSe) thin film solar cells. Two methods to produce micro-sized precursors of CIGSe absorbers on molybdenum are presented using 30-fs laser pulses at 790 nm wavelength. On the one hand, a multi pulse surface structuring of the molybdenum film or the underlying glass substrate and a subsequent physical vapor deposition were used for a site-selective aggregation of indium droplets. On the other hand, a single pulse laser-induced forward transfer was utilized to selectively deposit combined copper-indium precursor pixels on the molybdenum back contact of the solar cell. Post-processing (selenization, isolation, contacting) of the laser-generated micro-sized precursors results in functional CIGSe solar cells. T2 - 10. Mittweidaer Lasertagung CY - Mittweida, Germany DA - 16.11.2017 KW - Copper indium gallium diselenide (CIGSe) KW - Micro solar cell KW - Femtosecond laser KW - Laser ablation KW - Laser-induced forward transfer (LIFT) PY - 2017 SN - 1437-7624 VL - 2 SP - 1 EP - 4 PB - Hochschule Mittweida CY - Mittweida AN - OPUS4-42988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Mezera, Marek A1 - Florian, Camilo A1 - Krüger, Jörg A1 - Gräf, S. T1 - Laser-Induced Periodic Surface Structures: when Maxwell meets Marangoni N2 - Laser-Induced Periodic Surface Structures (LIPSS, ripples) are a universal phenomenon and can be generated in a contactless, single-step process on almost any material upon irradiation of solids with intense laser radiation. Nowadays, processing rates of up to m^2/min are enabling new industrial applications in medicine, optics, tribology, biology, etc. Depending on the specific type of LIPSS, their structural sizes typically range from several micrometers down to less than 100 nanometers – far beyond the optical diffraction limit – while their orientations exhibit a clear correlation with the local polarization direction of the laser radiation. From a theoretical point of view, however, a controversial and vivid debate has emerged during the last two decades, whether LIPSS originate from electromagnetic effects (seeded already during the laser irradiation) – or whether they emerge from matter reorganization processes, i.e. distinctly after the laser irradiation. This presentation reviews the currently existent theories of LIPSS. A focus is laid on the historic development of the fundamental ideas, their corresponding mathematical descriptions and numerical implementations, along with a comparison and critical assessment of the different approaches. T2 - 16th International Conference on Laser Ablation (COLA 2021/22) CY - Matsue, Japan DA - 24.04.2022 KW - Laser-induced periodic surface structures (LIPSS) KW - Laser ablation KW - Theoretical modelling KW - Electromagnetic scattering KW - Hydrodynamics PY - 2022 AN - OPUS4-54716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Laser-induced Periodic Surface Structures: Fundamentals & Applications N2 - During the past few years significantly increasing research activities in the field of laser-induced periodic surface structures (LIPSS, ripples) have been reported since the generation of LIPSS in a single-step process provides a simple way of surface nanostructuring towards a control of optical, mechanical or chemical surface properties. In this contribution the current research state in this field is reviewed. The formation of LIPSS upon irradiation of metals, semiconductors and dielectrics by multiple linearly polarized Ti:sapphire fs-laser pulses (30-150 fs) is studied experimentally and theoretically. Different types of LIPSS with periods even below 100 nm can be generated. Their dynamics and formation mechanisms are analyzed and identified in ultrafast optical experiments. Complementing theoretical calculations of the laser-induced carrier dynamics address transient changes of the optical properties of the irradiated materials and reveal the importance of surface plasmon polaritons in the early stage of LIPSS formation. Various applications of these nanostructures are outlined. T2 - Workshop "Materialbearbeitung mit gepulsen Lasern" der Universität Stuttgart CY - Hirschegg, Austria DA - 13.02.2018 KW - Laser-induced periodic surface structures (LIPSS) KW - Laser ablation KW - Surface functionalization KW - Femtosecond laser PY - 2018 AN - OPUS4-44295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn T1 - Scattering on scattering JF - Light: Science & Applications N2 - Ultrafast experiments can reveal the spatiotemporal dynamics of nanostructure formation via scattering in background-free optical dark-field microscopy. KW - Ultrafast microscopy KW - Scattering KW - Darkfield microscopy KW - Laser ablation PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-411596 DO - https://doi.org/10.1038/lsa.2017.88 SN - 2047-7538 VL - 6 SP - e17088, 1 EP - 2 PB - Springer Nature AN - OPUS4-41159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Baudach, Steffen A1 - Kautek, Wolfgang A1 - Geuss, Markus A1 - Sturm, Heinz T1 - The precision of the femtosecond-pulse laser ablation of TiN films on silicon JF - Applied physics A N2 - Ti:sapphire laser pulses of 130 fs and 800 nm were focused on 3.2-7m-thick TiN films by a 60-mm focal length lens in air. The morphology of the ablated areas generated by laser pulses at a fluence slightly above the ablation threshold was characterized in dependence on the pulse number by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The cavity profiles, depths, diameters, and volumes were quantitatively evaluated by AFM. The polarization state of the laser light is discussed as a further parameter, in addition to fluence and pulse number, that influences and controls the ablation precision of these materials. It was observed that circularly polarized radiation enhances the average ablation rates and reduces the roughness in the cavities by a factor of 2-3 as compared to linearly polarized radiation of the same incident laser fluence. Special attention was paid to the interfacial region between the coating and substrate. Ultrashort-pulse laser drilling into the Si substrate revealed the generation of columnar features which even may surmount the original coating under laser conditions. T2 - 5th International Conference on Laser Ablation ; COLA '99 CY - Göttingen, Germany DA - 1999-07-19 KW - Laser ablation KW - Picosecond PY - 1999 DO - https://doi.org/10.1007/s003390051425 SN - 0947-8396 VL - 69 IS - 7 SP - S399 EP - S402 PB - Springer CY - Berlin AN - OPUS4-778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Baudach, Steffen A1 - Kautek, Wolfgang A1 - Krüger, Jörg A1 - Welsch, E. T1 - Femtosecond laser damage of a high reflecting mirror JF - Thin solid films N2 - Multiple pulse investigations of 130-fs Ti:sapphire laser-induced damage of a high reflecting mirror consisting of alternating ?/4-layers of Ta2O5 and SiO2 and a single 500-nm Ta2O5 film were performed. In both cases, fused silica served as the substrate. For a fixed number of 1000 laser pulses per spot, a decrease in the damage threshold fluence of the mirror by a factor of two was observed by changing the repetition rate from 10 Hz to 1 kHz. A single 500-nm Ta2O5 film shows higher damage resistance compared to the mirror. The mirror and the Ta2O5 film samples were partially coated with a 300-nm-thick aluminium layer. The aluminium coating does not influence the damage threshold of the dielectrics underneath. KW - Aluminium KW - Laser ablation KW - Optical coatings KW - Silicon oxide PY - 2002 DO - https://doi.org/10.1016/S0040-6090(02)00074-3 SN - 0040-6090 IS - 408 SP - 297 EP - 301 PB - Elsevier CY - Amsterdam AN - OPUS4-1382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Höhm, S. A1 - Kirner, Sabrina V. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Laser-induced periodic surface structures — a scientific evergreen JF - IEEE Journal of Selected Topics in Quantum Electronics N2 - Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon and can be generated on almost any material upon irradiation with linearly polarized radiation. With the availability of ultrashort laser pulses, LIPSS have gained an increasing attraction during the past decade, since these structures can be generated in a simple single-step process, which allows a surface nanostructuring for tailoring optical, mechanical, and chemical surface properties. In this study, the current state in the field of LIPSS is reviewed. Their formation mechanisms are analyzed in ultrafast time-resolved scattering, diffraction, and polarization constrained double-pulse experiments. These experiments allow us to address the question whether the LIPSS are seeded via ultrafast energy deposition mechanisms acting during the absorption of optical radiation or via self-organization after the irradiation process. Relevant control parameters of LIPSS are identified, and technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. KW - Laser ablation KW - Nanostructures KW - Surface functionalization KW - Surface texture KW - Laser-induced periodic surface structures (LIPSS) PY - 2017 DO - https://doi.org/10.1109/JSTQE.2016.2614183 SN - 1077-260X SN - 1558-4542 VL - 23 IS - 3 SP - 9000615 PB - IEEE AN - OPUS4-38633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Krüger, Jörg ED - Sugioka, K. T1 - Laser-Induced Periodic Surface Structures (LIPSS) T2 - Handbook of Laser Micro- and Nano-Engineering N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon and can be generated on almost any material by irradiation with linearly polarized radiation. This chapter reviews the current state in the field of LIPSS, which are formed in a “self-ordered” way and are often accompanying materials processing applications. LIPSS can be produced in a single-stage process and enable surface nanostructuring and, in turn, adaption of optical, mechanical, and chemical surface properties. Typically, they feature a structural size ranging from several micrometers down to less than 100 nm and show a clear correlation with the polarization direction of the light used for their generation. Various types of LIPSS are classified, relevant control parameters are identified, and their material-specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Laser ablation KW - Microstructures KW - Nanostrcutures PY - 2021 SN - 978-3-030-63646-3 (Print) SN - 978-3-030-63647-0 (Online) DO - https://doi.org/10.1007/978-3-030-63647-0_17 SP - 879 EP - 936 PB - Springer-Nature Switzerland AG CY - Cham ET - 1 AN - OPUS4-53728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Krüger, Jörg ED - Sugioka, K. T1 - Laser-induced periodic surface structures (LIPSS) T2 - Handbook of laser micro- and nano-engineering N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon and can be generated on almost any material by irradiation with linearly polarized radiation. This chapter reviews the current state in the field of LIPSS, which are formed in a “self-ordered” way and are often accompanying materials processing applications. LIPSS can be produced in a single-stage process and enable surface nanostructuring and, in turn, adaption of optical, mechanical, and chemical surface properties. Typically, they feature a structural size ranging from several micrometers down to less than 100 nm and show a clear correlation with the polarization direction of the light used for their generation. Various types of LIPSS are classified, relevant control parameters are identified, and their material-specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. KW - Laser-induced periodic surface structures (LIPSS) KW - Laser ablation KW - Femtosecond laser KW - Nanostructures KW - Microstructures PY - 2020 SN - 978-3-319-69537-2 DO - https://doi.org/10.1007/978-3-319-69537-2_17-1 SP - 1 EP - 59 PB - Springer Nature CY - Cham, Switzerland ET - 1 AN - OPUS4-51332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -