TY - VIDEO A1 - Schwibbert, Karin A1 - Richter, Anja A1 - Bonse, Jörn T1 - BioCombs4Nanofibers: From nanofibers over spiders to bacteria N2 - This 6 minute long MP4-video presents some key results of the European research project "BioCombs4Nanofibers" to the broader public. Inspired by nature, some concepts of certain types of spiders are transferred to technology in order to develop bacteria-repellent surfaces through laser surface nanostructuring. Funding notice: This study was funded by the European Union's research and innovation program under the FET Open grant agreement No. 862016 (BioCombs4Nanofibers, http://biocombs4nanofibers.eu). KW - Antiadhesive surfaces KW - Laser-induced periodic surface structures (LIPSS) KW - Cribellate spiders KW - Bacterial adhesion tests KW - Bacteria-repellent surfaces PY - 2022 UR - https://download.jku.at/org/7kM/xyU/BioCombs4Nanofibers/D5.6_video%20for%20the%20broader%20public_23.03.2022.mp4 UR - https://www.jku.at/en/biocombs4nanofibers/dissemination/ DO - https://doi.org/10.26272/opus4-54939 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-54939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Florian, Camilo A1 - Mezera, Marek A1 - Wasmuth, Karsten A1 - Richter, Anja A1 - Schwibbert, Karin A1 - Krüger, Jörg A1 - Müller, F. A. A1 - Gräf, S. T1 - A brief survey on open questions about laser-induced periodic surface structures N2 - The processing of laser-induced periodic surface structures (LIPSS) represents a simple and robust way for the nanostructuring of solids that allows creating a wide range of surface functionalities featuring applications in optics, tribology, medicine, energy technologies, etc. While the currently available laser and scanner technology already allows surface processing rates at the m2/min level, industrial applications of LIPSS are sometimes hampered by the complex interplay between the nanoscale surface topography and the specific surface chemistry. This typically manifests in difficulties to control the processing of LIPSS and in limitations to ensure the long-term stability of the created surface functions. This presentation aims to identify some unsolved scientific problems related to LIPSS, discusses the pending technological limitations, and sketches the current state of theoretical modelling. Hereby, it is intended to stimulate further research and developments in the field of LIPSS for overcoming these limitations and for supporting the transfer of the LIPSS technology into industry. T2 - E-MRS Spring Meeting 2022 CY - Online meeting DA - 30.05.2022 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Industrial applications KW - Biofilm growth PY - 2022 AN - OPUS4-54929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Mirabella, Francesca A1 - Mezera, Marek A1 - Weise, Matthias A1 - Sahre, Mario A1 - Wasmuth, Karsten A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Chemical and structural changes at the surface of titanium materials upon irradiation with near-infrared ultrashort laser pulses N2 - Due to its large strength-to-weight ratio and excellent biocompatibility, titanium materials are of paramount importance for medical applications, e.g. as implant material for protheses. In this work, the evolution of various types of laser-induced micro- and nanostructures emerging on titanium or titanium alloys upon irradiation by near-infrared ultrashort laser pulses (925 fs, 1030 nm) in air environment is studied for various laser fluence levels, effective number of pulses and at different pulse repetition rates (1 – 400 kHz). The morphologies of the processed surfaces were systematically characterized by optical and scanning electron microscopy (OM, SEM). Complementary white-light interference microscopy (WLIM) revealed the corresponding surface topographies. Chemical and structural changes were analysed through depth-profiling time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray diffraction (XRD) analyses. The results point towards a remarkable influence of the laser processing parameters on the surface topography, while simultaneously altering the near-surface chemistry via laser-induced oxidation effects. Consequences for medical applications are outlined. T2 - E-MRS Spring Meeting 2022 CY - Online meeting DA - 30.05.2022 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - ToF-SIMS KW - Chemical analysis KW - Titanium PY - 2022 AN - OPUS4-54931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Mezera, Marek A1 - Florian, Camilo A1 - Krüger, Jörg A1 - Gräf, S. T1 - Laser-Induced Periodic Surface Structures: when Maxwell meets Marangoni N2 - Laser-Induced Periodic Surface Structures (LIPSS, ripples) are a universal phenomenon and can be generated in a contactless, single-step process on almost any material upon irradiation of solids with intense laser radiation. Nowadays, processing rates of up to m^2/min are enabling new industrial applications in medicine, optics, tribology, biology, etc. Depending on the specific type of LIPSS, their structural sizes typically range from several micrometers down to less than 100 nanometers – far beyond the optical diffraction limit – while their orientations exhibit a clear correlation with the local polarization direction of the laser radiation. From a theoretical point of view, however, a controversial and vivid debate has emerged during the last two decades, whether LIPSS originate from electromagnetic effects (seeded already during the laser irradiation) – or whether they emerge from matter reorganization processes, i.e. distinctly after the laser irradiation. This presentation reviews the currently existent theories of LIPSS. A focus is laid on the historic development of the fundamental ideas, their corresponding mathematical descriptions and numerical implementations, along with a comparison and critical assessment of the different approaches. T2 - 16th International Conference on Laser Ablation (COLA 2021/22) CY - Matsue, Japan DA - 24.04.2022 KW - Laser-induced periodic surface structures (LIPSS) KW - Laser ablation KW - Theoretical modelling KW - Electromagnetic scattering KW - Hydrodynamics PY - 2022 AN - OPUS4-54716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Legall, Herbert A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Emission of X-rays during ultrashort pulse laser processing T2 - Proceedings Lasers in Manufacturing Conference 2021 N2 - Ultrashort pulse laser materials processing can be accompanied by the production of X-rays. Small doses per laser pulse can accumulate to significant dose rates at high laser pulse repetition rates which may exceed the permitted X-ray limits for human exposure. Consequently, a proper radiation shielding must be considered in laser machining. A brief overview of the current state of the art in the field of undesired generation of X-ray radiation during ultrashort pulse laser material processing in air is presented. T2 - Lasers in Manufacturing Conference 2021 CY - Online meeting DA - 21.06.2021 KW - Ultra-short pulse laser processing KW - Laser-induced X-ray emission KW - Radiation protection PY - 2021 SP - 1 EP - 5 AN - OPUS4-53866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Krüger, Jörg ED - Sugioka, K. T1 - Laser-Induced Periodic Surface Structures (LIPSS) T2 - Handbook of Laser Micro- and Nano-Engineering N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon and can be generated on almost any material by irradiation with linearly polarized radiation. This chapter reviews the current state in the field of LIPSS, which are formed in a “self-ordered” way and are often accompanying materials processing applications. LIPSS can be produced in a single-stage process and enable surface nanostructuring and, in turn, adaption of optical, mechanical, and chemical surface properties. Typically, they feature a structural size ranging from several micrometers down to less than 100 nm and show a clear correlation with the polarization direction of the light used for their generation. Various types of LIPSS are classified, relevant control parameters are identified, and their material-specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Laser ablation KW - Microstructures KW - Nanostrcutures PY - 2021 SN - 978-3-030-63646-3 (Print) SN - 978-3-030-63647-0 (Online) DO - https://doi.org/10.1007/978-3-030-63647-0_17 SP - 879 EP - 936 PB - Springer-Nature Switzerland AG CY - Cham ET - 1 AN - OPUS4-53728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Florian, Camilo A1 - Wonneberger, R. A1 - Undisz, A. A1 - Kirner, Sabrina V. A1 - Wasmuth, Karsten A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Surface oxidation accompanying the formation of various types of femtosecond laser-generated surface structures on titanium alloy N2 - Different types of laser-generated surface structures, i.e., Laser-induced Periodic Surface Structures (LIPSS, ripples), Grooves, and Spikes are generated on titanium and Ti6Al4V surfaces by means of femtosecond (fs) laser scan processing (790 nm, 30 fs, 1 kHz) in ambient air. Morphological, chemical and structural properties of the different surface structures are characterized by various surface analytical techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), Glow discharge optical emission spectroscopy (GD-OES), and depth-profiling Auger electron spectroscopy (AES). It is revealed that the formation of near-wavelength sized LIPSS is accompanied by the formation of a graded oxide extending several tens to a few hundreds of nanometers into depth. GD-OES performed on other superficial fs-laser generated structures produced at higher fluences and effective number of pulses per spot area such as periodic Grooves and irregular Spikes indicate even thicker graded oxide layers. These graded layers may be suitable for applications in prosthetics or tribology. T2 - E-MRS Spring Meeting 2021 CY - Online meeting DA - 31.05.2021 KW - Laser-induced periodic surface structures (LIPSS) KW - Titanium alloy KW - Oxidation KW - Glow-discharge optical emission spectroscopy PY - 2021 AN - OPUS4-52749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Rudenko, A. A1 - Déziel, J.-L. A1 - Florian, Camilo A1 - Krüger, Jörg A1 - Siegel, J. A1 - Colombier, J.-P. T1 - The role of electromagnetic scattering in the formation of laser-induced periodic surface structures N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon that is accompanying laser materials processing. These surface nanostructures pave a simple way for surface functionalization with numerous applications in optics, fluidics, tribology, medicine, etc. During the last decade remarkable experimental and theoretical improvements in understanding of their formation mechanisms were obtained - all pointing toward polarization-dependent energy deposition by absorption of optical radiation that is scattered at the surface roughness and interfering with the laser beam. This contribution reviews the current state-of-the-art on the role of electromagnetic scattering in the formation of LIPSS by ultrashort laser pulses. Special attention is drawn to recent finite-difference time-domain (FDTD) calculations that allow to visualize the radiation patterns formed in the vicinity of the sample surface and to the impact of a thin superficial laser-induced oxidation layer. T2 - E-MRS Spring Meeting 2021 CY - Online meeting DA - 31.05.2021 KW - Laser-induced periodic surface structures (LIPSS) KW - Optical scattering KW - Oxidation KW - Femtosecond laser PY - 2021 AN - OPUS4-52729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Mezera, Marek A1 - Florian, Camilo A1 - Krüger, Jörg A1 - Gräf, S. T1 - Laser-induced periodic surface structures: When electromagnetics drives hydrodynamics N2 - Laser-induced Periodic Surface Structures (LIPSS, ripples) are a universal phenomenon and can be generated in a contactless, single-step process on almost any material upon irradiation of solids with intense laser radiation. Nowadays processing rates of up to m^2/min are enabling new industrial applications in medicine, optics, tribology, biology, etc. Depending on the specific type of LIPSS, their structural sizes typically range from several micrometers down to less than 100 nanometers – far beyond the optical diffraction limit – while their orientations exhibit a clear correlation with the local polarization direction of the laser radiation. From a theoretical point of view, however, a vivid, controversial, and long-lasting debate has emerged during the last two decades, whether LIPSS originate from electromagnetic effects (seeded already during the laser irradiation) – or whether they emerge from matter reorganization processes (distinctly after the laser irradiation). This presentation reviews the currently existent theories of LIPSS. A focus is laid on the historic development of the fundamental ideas, their corresponding mathematical descriptions and numerical implementations, along with a comparison and critical assessment of the different approaches. T2 - 28th International Conference on Advanced Laser Technologies (ALT'21) CY - Online meeting DA - 06.09.2021 KW - Laser-induced periodic surface structures, LIPSS KW - Electromagnetic scattering KW - Matter reorganization PY - 2021 DO - https://doi.org/10.24412/cl-35039-2021-21-25-25 AN - OPUS4-53218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Surface nanotexturing by ultrashort laser pulses N2 - The presentation reviews the BAM activities in the field of surface processing by ultrashort laser pulses. A focus is laid on the generation of laser-induced periodic surface structures (LIPSS) which allow various surface functionalizations for applications in optics, tribology, liquid management, and medicine. T2 - Photonics Days Berlin Brandenburg 2022 CY - Berlin, Germany DA - 05.10.2022 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Surface functionalization PY - 2022 AN - OPUS4-55921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -