TY - JOUR A1 - Seuthe, T. A1 - Grehn, M. A1 - Mermillod-Blondin, A. A1 - Eichler, H.J. A1 - Bonse, Jörn A1 - Eberstein, M. T1 - Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy N2 - The effects of single femtosecond laser pulse irradiation (130 fs pulse duration, 800 nm center wavelength) on the structure of binary lithium silicate glasses of varying chemical compositions were investigated by micro-Raman spectroscopy. Permanent modifications were generated at the surface of the glass samples with varying laser fluences in the ablative regime and evaluated for changes in the corresponding Raman band positions and bandwidths. For increasing laser fluences, the position of certain Raman bands changed, indicating an increase in the mass density of the glass inside the irradiated area. Simultaneously, the widths of all investigated bands increased, indicating a higher degree of disorder in the glass structure with respect to bond-angle and bond-length variations. PY - 2013 U6 - https://doi.org/10.1364/OME.3.000755 SN - 2159-3930 VL - 3 IS - 6 SP - 755 EP - 764 PB - OSA CY - Washington, DC AN - OPUS4-28372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grehn, M. A1 - Reinhardt, F. A1 - Bonse, Jörn A1 - Eberstein, M. A1 - Seuthe, T. T1 - Response to "comment on 'femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy'" KW - Bond lengths KW - Glass KW - High-speed optical techniques KW - Magnesium compounds KW - Monochromators KW - Potassium compounds KW - Silicon compounds KW - XANES PY - 2013 U6 - https://doi.org/10.1063/1.4804148 SN - 0003-6951 SN - 1077-3118 VL - 102 SP - 196102-1 - 196102-2 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-28520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grehn, M. A1 - Tsai, W.J. A1 - Höfner, M. A1 - Seuthe, T. A1 - Bonse, Jörn A1 - Mermillod-Blondin, A. A1 - Rosenfeld, A. A1 - Hennig, J. A1 - Achtstein, A. W. A1 - Theiss, C. A1 - Woggon, U. A1 - Eberstein, M. A1 - Eichler, H.J. T1 - Nonlinear optical properties of binary and ternary silicate glasses upon near-infrared femtosecond pulse laser irradiation N2 - Some nonlinear optical properties such as the nonlinear refractive index and the nonlinear effective absorption, as well as the laser-induced single-pulse ablation threshold are characterized for a series of binary and ternary silicate glasses upon irradiation with near-infrared femtosecond laser pulses (800 nm, 130 fs). The laser-induced ablation threshold varies from 2.3 J/cm² in case of potassium silicate glass up to 4.3 J/cm² in case of Fused Silica. Nonlinear refractive indices are qualitatively similar within the range 1.7-2.7×10-16 cm²/W. Complementary optical and physico-chemical properties like band gap energy and the glass transformation temperature have been measured for all the glasses. T2 - International symposium on high power laser ablation 2012 CY - Santa Fe, NM, USA DA - 30.04.2012 KW - Laser-induced damage threshold KW - Laser ablation KW - Nonlinear refractive index KW - Silicate glass systems KW - Glass transformation temperature KW - Coefficient of thermal expansion PY - 2012 SN - 978-0-7354-1068-8 U6 - https://doi.org/10.1063/1.4739918 N1 - Serientitel: AIP conference proceedings – Series title: AIP conference proceedings VL - 1464 SP - 660 EP - 670 AN - OPUS4-26318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geier, M. A1 - Eberstein, M. A1 - Grießmann, H. A1 - Partsch, U. A1 - Völkel, L. A1 - Böhme, R. A1 - Mann, Guido A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Impact of laser treatment on phosphoric acid coated multicrystalline silicon PV-wafers N2 - The selective emitter is a well-known technology for producing highly doped areas under the metallization grid to improve the solar cell performance. In this work, the influence of laser irradiation on phosphoric acid coated multicrystalline silicon PV-wafers on the wafer surface structure, the phosphorous depth distribution and the electrical contact resistance within the laser treated area as well as the electrical series resistance of laserprocessed solar cells was evaluated. Different laser processing settings were tested including pulsed and continuous wave (cw) laser sources (515 nm, 532 nm, 1064 nm wavelength). Complementary numerical simulations using the finite element method (FEM) were conducted to explain the impact of the laser parameters on the melting behavior (melt duration and geometry). It was found that the melt duration is a key parameter for a successful laser Doping process. Our simulations at a laser wavelengths of 515 nm reveal that low-repetition rate (<500 kHz) laser pulses of 300 ns duration generate a melt duration of ~0.35 µs, whereas upon scanning cw-laser radiation at 532 nm prolongates the melt duration by at least one order of magnitude. Experimentally, the widely used ns-laser pulses did not lead to satisfying laser irradiation results. In contrast, cw-laser radiation and scan velocities of less than 2 m/s led to suitable laser doping featuring low electrical resistances in the laser treated areas. T2 - 26th European photovoltaic solar energy conference and exhibition CY - Hamburg, Germany DA - 05.09.2011 KW - Silicon solar cell KW - Selective emitter KW - Laser processing KW - Doping KW - Simulation PY - 2011 SN - 3-936338-27-2 U6 - https://doi.org/10.4229/26thEUPVSEC2011-2BV.1.7 SP - 1243 EP - 1247 AN - OPUS4-24995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberstein, M. A1 - Geier, M. A1 - Grießmann, H. A1 - Partsch, U. A1 - Voelkel, L. A1 - Böhme, R. A1 - Pentzien, Simone A1 - Koter, Robert A1 - Mann, Guido A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Towards an industrial laser doping process for the selective emitter using phosphoric acid as dopant N2 - Different laser supported approaches have already been realized, proving the great potential of laserdoped selective emitters (LDSE). However, it is challenging to establish a low-cost process by using pulsed laser tools. So far a single-step process only leads to satisfying results utilizing cw-lasers. In this paper we have examined a two-step process to produce laser-doped selective emitters on multicrystalline textured standard silicon photovoltaic wafers (90-Ω/sq-Emitter, SiN-antireflection coating (ARC)). The precise ARC removal by near-infrared fs-laser pulses (30 fs, 800 nm), and the doping of uncoated silicon wafers by ns-laser pulses (8 ns, 532 nm) were systematically investigated. In the fs-experiment, optimum conditions for ARC removal were identified. In the nsexperiments under suitable conditions (melting regime), the phosphorous concentration underneath the wafer surface was significantly increased and the sheet resistance was reduced by nearly a factor of two. Moreover, electrical measurements on fired metallization fingers deposited on the laser processed wafers showed low contact resistances. Hence, wafer conditioning with combined fs-laser- and ns-laser-processes are expected to be a promising technology for producing selective emitters. T2 - 26th European photovoltaic solar energy conference and exhibition CY - Hamburg, Germany DA - 05.09.2011 KW - Laser processing KW - Doping KW - Selective emitter KW - Multicrystalline silicon PY - 2011 SN - 3-936338-27-2 U6 - https://doi.org/10.4229/26thEUPVSEC2011-2BV.1.2 SP - 1220 EP - 1223 AN - OPUS4-24996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seuthe, T. A1 - Höfner, M. A1 - Reinhardt, F. A1 - Tsai, W.J. A1 - Bonse, Jörn A1 - Eberstein, M. A1 - Eichler, H.J. A1 - Grehn, M. T1 - Femtosecond laser-induced modification of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy N2 - The effects of femtosecond laser pulse irradiation on the glass structure of alkaline silicate glasses were investigated by x-ray absorption near edge structure spectroscopy using the beamline of the Physikalisch-Technische Bundesanstalt at the electron synchrotron BESSY II in Berlin (Germany) by analyzing the magnesium Κ-edge absorption peak for different laser fluences. The application of fluences above the material modification threshold (2.1 J/cm²) leads to a characteristic shift of ~1.0 eV in the Κ-edge revealing a reduced (~3%) mean magnesium bond length to the ligated oxygen ions (Mg-O) along with a reduced average coordination number of the Mg ions. KW - Glass KW - Glass structure KW - Laser beam effects KW - Magnesium compounds KW - Potassium compounds KW - XANES PY - 2012 U6 - https://doi.org/10.1063/1.4723718 SN - 0003-6951 SN - 1077-3118 VL - 100 IS - 22 SP - 224101-1 EP - 224101-3 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-25918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seuthe, T. A1 - Grehn, M. A1 - Mermillod-Blondin, A. A1 - Bonse, Jörn A1 - Eberstein, M. T1 - Compositional dependent response of silica-based glasses after femtosecond laser pulse irradiation N2 - Femtosecond laser pulse irradiation of inorganic glasses allows a selective modification of the optical properties with very high precision. This results in the possibility for the production of three-dimensional functional optical elements in the interior of glass materials, such as optical data storage, waveguide writing, etc. The influence of the chemical glass composition to the response upon ultrashort laser irradiation has not been studied systematically. For that, simple silicabased model glasses composed of systematically varying alkaline- and earth-alkaline components were prepared, irradiated on the surface and in the volume with single fs-laser pulses (~130 fs, 800 nm), and were subsequently analyzed by means of micro-Raman spectroscopy and quantitative phase contrast microscopy in order to account for changes in the glass structure and for alterations of the optical refractive index, respectively. The Raman spectroscopic studies of the laser-irradiated spots revealed no change in the average binding configuration (the so called Q-structure), but local changes of bond-angles and bond-lengths within the glass structure structure. Those changes are explained by structural relaxation of the glass network due to densification caused by a transient laser-induced plasma generation and the following shock wave and other thermal phenomena. Glasses with a low amount of network modifiers show changes in the Si-O network while glasses with a high amount of network modifiers react primarily via variation of the nonbridging oxygen ions. The results are discussed in terms of possible structural response mechanisms and conclusions are outlined regarding glass compositions with technical suitability for fs-laser modifications. T2 - Laser-induced damage in optical materials CY - Boulder, Colorado, USA DA - 2013-09-22 KW - Femtosecond laser modifications KW - Raman spectroscopy KW - Glass KW - Femtosecond phenomena KW - Networks KW - Silica KW - Laser irradiation KW - Lasers KW - Micro raman spectroscopy KW - Microscopy KW - Optical components KW - Optical storage PY - 2013 U6 - https://doi.org/10.1117/12.2028713 N1 - Serientitel: SPIE proceedings series – Series title: SPIE proceedings series VL - 8885 SP - 1 EP - 8(?) AN - OPUS4-29539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grehn, M. A1 - Seuthe, T. A1 - Tsai, W.-J. A1 - Höfner, M. A1 - Achtstein, A. W. A1 - Mermillod-Blondin, A. A1 - Eberstein, M. A1 - Eichler, H.J. A1 - Bonse, Jörn T1 - Nonlinear absorption and refraction of binary and ternary alkaline and alkaline earth silicate glasses N2 - Nonlinear optical properties such as the nonlinear refractive index and nonlinear absorption are characterized by z-scan measurements for a series of silicate glasses upon irradiation with laser pulses of 130 fs duration and 800 nm center wavelength. The stoichiometry of the silicate glasses is varied systematically to reveal the influence of the glass composition on the nonlinear optical properties. Additionally, the thermal properties such as glass–transformation temperature and thermal expansion coefficient are obtained from dilatometric measurements. It is found that the nonlinear refractive index is mainly related to the silica matrix. The nonlinear absorption is increased with the addition of network–forming ions. PY - 2013 U6 - https://doi.org/10.1364/OME.3.002132 SN - 2159-3930 VL - 3 IS - 12 SP - 2132 EP - 2140 PB - OSA CY - Washington, DC AN - OPUS4-29649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Mann, Guido A1 - Krüger, Jörg A1 - Marcinkowski, M. A1 - Eberstein, M. T1 - Femtosecond laser-induced removal of silicon nitride layers from doped and textured silicon wafers used in photovoltaics N2 - The removal of a 75- to 90-nm-thick passivating silicon nitride antireflection coating from standard textured multicrystalline silicon photovoltaic wafers with a typical diffused 90-Ω/sq-emitter upon irradiation with near-infrared femtosecond laser pulses (790 nm central wavelength, 30 fs pulse duration) is studied experimentally. The laser irradiation areas are subsequently characterized by complementary optical microscopy, scanning electron microscopy and depth profiling chemical analyses using secondary ion mass spectrometry. The results clarify the thin-film femtosecond laser ablation scenario and outline the process windows for selective antireflection coating removal. KW - Photovoltaics KW - Solar cell KW - Laser processing KW - FS-laser ablation KW - Silicon nitride PY - 2013 U6 - https://doi.org/10.1016/j.tsf.2013.07.005 SN - 0040-6090 VL - 542 SP - 420 EP - 425 PB - Elsevier CY - Amsterdam AN - OPUS4-28874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grehn, M. A1 - Seuthe, T. A1 - Reinhardt, F. A1 - Höfner, M. A1 - Griga, N. A1 - Eberstein, M. A1 - Bonse, Jörn T1 - Debris of potassium-magnesium silicate glass generated by femtosecond laser-induced ablation in air: An analysis by near edge X-ray absorption spectroscopy, micro Raman and energy dispersive X-ray spectroscopy N2 - The redeposited material (debris) resulting from ablation of a potassium–magnesium silicate glass upon scanning femtosecond laser pulse irradiation (130 fs, 800 nm) in air environment is investigated by means of three complementary surface analytical methods. Changes in the electronic band structure of the glass constituent Magnesium (Mg) were identified by X-ray Absorption Near Edge Structure spectroscopy (XANES) using synchrotron radiation. An up-shift of ≈0.8 eV of a specific Magnesium Κ-edge absorption peak in the spectrum of the redeposited material along with a significant change in its leading edge position was detected. In contrast, the surface left after laser ablation exhibits a downshift of the peak position by ≈0.9 eV. Both observations may be related to a change of the Mg coordinative state of the laser modified/redeposited glass material. The presence of carbon in the debris is revealed by micro Raman spectroscopy (µ-RS) and was confirmed by energy dispersive X-ray spectroscopy (EDX). These observations are attributed to structural changes and chemical reactions taking place during the ablation process. KW - Femtosecond laser ablation KW - Potassium-magnesium silicate glass KW - Debris KW - XANES KW - EDX KW - Raman spectroscopy PY - 2014 U6 - https://doi.org/10.1016/j.apsusc.2013.10.028 SN - 0169-4332 SN - 1873-5584 VL - 302 SP - 286 EP - 290 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-30454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -