TY - JOUR A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Femtosecond laser-induced periodic surface structures on silica N2 - The formation of laser-induced periodic surface structures (LIPSS) on two different silica polymorphs (single-crystalline synthetic quartz and commercial fused silica glass) upon irradiation in air with multiple linearly polarized single- and double-fs-laser pulse sequences (τ = 150 fs pulse duration, λ = 800nm center wavelength, temporal pulse separation Δt < 40 ps) is studied experimentally and theoretically. Two distinct types of fs-LIPSS [so-called low-spatial-frequency LIPSS (LSFL) and high-spatial-frequency LIPSS (HSFL)] with different spatial periods and orientations were identified. Their appearance was characterized with respect to the experimental parameters peak laser fluence and number of laser pulses per spot. Additionally, the 'dynamics' of the LIPSS formation was addressed in complementary double-fs-pulse experiments with varying delays, revealing a characteristic change of the LSFL periods. The experimental results are interpreted on the basis of a Sipe-Drude model considering the carrier dependence of the optical properties of fs-laser excited silica. This new approach provides an explanation of the LSFL orientation parallel to the laser beam polarisation in silica—as opposed to the behaviour of most other materials. KW - High-speed optical techniques KW - Laser beam effects KW - Refractive index KW - Silicon compounds KW - Surface structure PY - 2012 U6 - https://doi.org/10.1063/1.4730902 SN - 0021-8979 SN - 1089-7550 VL - 112 IS - 1 SP - 014901-1 - 014901-9 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-26201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica N2 - The formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration, 800?nm center wavelength) is studied experimentally using a transillumination femtosecond time-resolved (0.1 ps-1 ns) pump-probe diffraction approach. This allows to reveal the generation dynamics of near-wavelength-sized LIPSS showing a transient diffraction at specific spatial frequencies even before a corresponding permanent surface relief was observed. The results confirm that the ultrafast energy deposition to the materials surface plays a key role and triggers subsequent physical mechanisms such as carrier scattering into self-trapped excitons. KW - High-speed optical techniques KW - Laser beam effects KW - Silicon compounds KW - Surface structure PY - 2013 U6 - https://doi.org/10.1063/1.4790284 SN - 0003-6951 SN - 1077-3118 VL - 102 IS - 5 SP - 054102-1 EP - 054102-4 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-27646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses N2 - The formation of nearly wavelength-sized laser-induced periodic surface structures (LIPSSs) on single-crystalline silicon upon irradiation with single or multiple femtosecond-laser pulses (pulse duration τ=130 fs and central wavelength λ=800 nm) in air is studied experimentally and theoretically. In our theoretical approach, we model the LIPSS formation by combining the generally accepted first-principles theory of Sipe and co-workers with a Drude model in order to account for transient intrapulse changes in the optical properties of the material due to the excitation of a dense electron-hole plasma. Our results are capable to explain quantitatively the spatial periods of the LIPSSs being somewhat smaller than the laser wavelength, their orientation perpendicular to the laser beam polarization, and their characteristic fluence dependence. Moreover, evidence is presented that surface plasmon polaritons play a dominant role during the initial stage of near-wavelength-sized periodic surface structures in femtosecond-laser irradiated silicon, and it is demonstrated that these LIPSSs can be formed in silicon upon irradiation by single femtosecond-laser pulses. KW - Ab initio calculations KW - Elemental semiconductors KW - High-speed optical techniques KW - Laser beam effects KW - Polaritons KW - Silicon KW - Solid-state plasma KW - Surface plasmons KW - Surface structure PY - 2009 U6 - https://doi.org/10.1063/1.3261734 SN - 0021-8979 SN - 1089-7550 VL - 106 IS - 10 SP - 104910-1 - 104910-5 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-20453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon N2 - The formation of nearly wavelength-sized laser-induced periodic surface structures (LIPSS) on single-crystalline silicon upon irradiation with single (N = 1) and multiple (N ≤ 1000) linearly polarized femtosecond (fs) laser pulses (pulse duration τ = 130 fs, central wavelength λ = 800 nm) in air is studied experimentally. Scanning electron microscopy (SEM) and optical microscopy are used for imaging of the ablated surface morphologies, both revealing LIPSS with periodicities close to the laser wavelength and an orientation always perpendicular to the polarization of the fs-laser beam. It is experimentally demonstrated that these LIPSS can be formed in silicon upon irradiation by single fs-laser pulses—a result that is additionally supported by a recent theoretical model. Two-dimensional Fourier transforms of the SEM images allow the detailed analysis of the distribution of the spatial frequencies of the LIPSS and indicate, at a fixed peak fluence, a monotonous decrease in their mean spatial period between ~770 nm (N = 1) and 560 nm (N = 1000). The characteristic decrease in the LIPSS period is caused by a feedback-mechanism acting upon excitation of surface plasmon polaritons at the rough silicon surface which is developing under the action of multiple pulses into a periodically corrugated surface. KW - Elemental semiconductors KW - Fourier transforms KW - Laser beam effects KW - Optical microscopy KW - Polarisation KW - Polaritons KW - Scanning electron microscopy KW - Silicon KW - Surface morphology KW - Surface plasmons PY - 2010 UR - http://jap.aip.org/resource/1/japiau/v108/i3/p034903_s1 U6 - https://doi.org/10.1063/1.3456501 SN - 0021-8979 SN - 1089-7550 VL - 108 IS - 3 SP - 034903-1 - 034903-5 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-21804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rohloff, M. A1 - Das, S.K. A1 - Höhm, S. A1 - Grunwald, R. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences N2 - The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of five Ti:sapphire femtosecond (fs) laser pulse pairs (150 fs, 800 nm) is studied experimentally. A Michelson interferometer is used to generate near-equal-energy double-pulse sequences with a temporal pulse delay from -20 to +20 ps between the cross-polarized individual fs-laser pulses (~0.2 ps resolution). The results of multiple double-pulse irradiation sequences are characterized by means of Scanning Electron and Scanning Force Microscopy. Specifically in the sub-ps delay domain striking differences in the surface morphologies can be observed, indicating the importance of the laser-induced free-electron plasma in the conduction band of the solids for the formation of LIPSS. KW - Atomic force microscopy KW - Conduction bands KW - High-speed optical techniques KW - Laser beam effects KW - Scanning electron microscopy KW - Silicon compounds KW - Surface morphology PY - 2011 U6 - https://doi.org/10.1063/1.3605513 SN - 0021-8979 SN - 1089-7550 VL - 110 IS - 1 SP - 014910-1 - 014910-4 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-24049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -