TY - JOUR A1 - Grehn, M. A1 - Reinhardt, F. A1 - Bonse, Jörn A1 - Eberstein, M. A1 - Seuthe, T. T1 - Response to "comment on 'femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy'" KW - Bond lengths KW - Glass KW - High-speed optical techniques KW - Magnesium compounds KW - Monochromators KW - Potassium compounds KW - Silicon compounds KW - XANES PY - 2013 U6 - https://doi.org/10.1063/1.4804148 SN - 0003-6951 SN - 1077-3118 VL - 102 SP - 196102-1 - 196102-2 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-28520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Femtosecond laser-induced periodic surface structures on silica N2 - The formation of laser-induced periodic surface structures (LIPSS) on two different silica polymorphs (single-crystalline synthetic quartz and commercial fused silica glass) upon irradiation in air with multiple linearly polarized single- and double-fs-laser pulse sequences (τ = 150 fs pulse duration, λ = 800nm center wavelength, temporal pulse separation Δt < 40 ps) is studied experimentally and theoretically. Two distinct types of fs-LIPSS [so-called low-spatial-frequency LIPSS (LSFL) and high-spatial-frequency LIPSS (HSFL)] with different spatial periods and orientations were identified. Their appearance was characterized with respect to the experimental parameters peak laser fluence and number of laser pulses per spot. Additionally, the 'dynamics' of the LIPSS formation was addressed in complementary double-fs-pulse experiments with varying delays, revealing a characteristic change of the LSFL periods. The experimental results are interpreted on the basis of a Sipe-Drude model considering the carrier dependence of the optical properties of fs-laser excited silica. This new approach provides an explanation of the LSFL orientation parallel to the laser beam polarisation in silica—as opposed to the behaviour of most other materials. KW - High-speed optical techniques KW - Laser beam effects KW - Refractive index KW - Silicon compounds KW - Surface structure PY - 2012 U6 - https://doi.org/10.1063/1.4730902 SN - 0021-8979 SN - 1089-7550 VL - 112 IS - 1 SP - 014901-1 - 014901-9 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-26201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica N2 - The formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration, 800?nm center wavelength) is studied experimentally using a transillumination femtosecond time-resolved (0.1 ps-1 ns) pump-probe diffraction approach. This allows to reveal the generation dynamics of near-wavelength-sized LIPSS showing a transient diffraction at specific spatial frequencies even before a corresponding permanent surface relief was observed. The results confirm that the ultrafast energy deposition to the materials surface plays a key role and triggers subsequent physical mechanisms such as carrier scattering into self-trapped excitons. KW - High-speed optical techniques KW - Laser beam effects KW - Silicon compounds KW - Surface structure PY - 2013 U6 - https://doi.org/10.1063/1.4790284 SN - 0003-6951 SN - 1077-3118 VL - 102 IS - 5 SP - 054102-1 EP - 054102-4 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-27646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses N2 - The formation of nearly wavelength-sized laser-induced periodic surface structures (LIPSSs) on single-crystalline silicon upon irradiation with single or multiple femtosecond-laser pulses (pulse duration τ=130 fs and central wavelength λ=800 nm) in air is studied experimentally and theoretically. In our theoretical approach, we model the LIPSS formation by combining the generally accepted first-principles theory of Sipe and co-workers with a Drude model in order to account for transient intrapulse changes in the optical properties of the material due to the excitation of a dense electron-hole plasma. Our results are capable to explain quantitatively the spatial periods of the LIPSSs being somewhat smaller than the laser wavelength, their orientation perpendicular to the laser beam polarization, and their characteristic fluence dependence. Moreover, evidence is presented that surface plasmon polaritons play a dominant role during the initial stage of near-wavelength-sized periodic surface structures in femtosecond-laser irradiated silicon, and it is demonstrated that these LIPSSs can be formed in silicon upon irradiation by single femtosecond-laser pulses. KW - Ab initio calculations KW - Elemental semiconductors KW - High-speed optical techniques KW - Laser beam effects KW - Polaritons KW - Silicon KW - Solid-state plasma KW - Surface plasmons KW - Surface structure PY - 2009 U6 - https://doi.org/10.1063/1.3261734 SN - 0021-8979 SN - 1089-7550 VL - 106 IS - 10 SP - 104910-1 - 104910-5 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-20453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mermillod-Blondin, A. A1 - Mauclair, C. A1 - Bonse, Jörn A1 - Stoian, R. A1 - Audouard, E. A1 - Rosenfeld, A. A1 - Hertel, I.V. T1 - Time-resolved imaging of laser-induced refractive index changes in transparent media N2 - We describe a method to visualize ultrafast laser-induced refractive index changes in transparent materials with a 310 fs impulse response and a submicrometer spatial resolution. The temporal profile of the laser excitation sequence can be arbitrarily set on the subpicosecond and picosecond time scales with a pulse shaping unit, allowing for complex laser excitation. Time-resolved phase contrast microscopy reveals the real part of the refractive index change and complementary time-resolved optical transmission microscopy measurements give access to the imaginary part of the refractive index in the irradiated region. A femtosecond laser source probes the complex refractive index changes from the excitation time up to 1 ns, and a frequency-doubled Nd:YAG laser emitting 1 ns duration pulses is employed for collecting data at longer time delays, when the evolution is slow. We demonstrate the performance of our setup by studying the energy relaxation in a fused silica sample after irradiation with a double pulse sequence. The excitation pulses are separated by 3 ps. Our results show two dimensional refractive index maps at different times from 200 fs to 100 µs after the laser excitation. On the subpicosecond time scale we have access to the spatial characteristics of the energy deposition into the sample. At longer times (800 ps), time-resolved phase contrast microscopy shows the appearance of a strong compression wave emitted from the excited region. On the microsecond time scale, we observe energy transfer outside the irradiated region. KW - High-speed optical techniques KW - Light transmission KW - Neodymium KW - Optical harmonic generation KW - Optical pulse shaping KW - Refractive index KW - Self-induced transparency KW - Silicon compounds KW - Solid lasers PY - 2011 UR - http://rsi.aip.org/resource/1/rsinak/v82/i3/p033703_s1 U6 - https://doi.org/10.1063/1.3527937 SN - 0034-6748 SN - 1089-7623 VL - 82 IS - 3 SP - 033703-1 EP - 033703-8 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-23308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rohloff, M. A1 - Das, S.K. A1 - Höhm, S. A1 - Grunwald, R. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences N2 - The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of five Ti:sapphire femtosecond (fs) laser pulse pairs (150 fs, 800 nm) is studied experimentally. A Michelson interferometer is used to generate near-equal-energy double-pulse sequences with a temporal pulse delay from -20 to +20 ps between the cross-polarized individual fs-laser pulses (~0.2 ps resolution). The results of multiple double-pulse irradiation sequences are characterized by means of Scanning Electron and Scanning Force Microscopy. Specifically in the sub-ps delay domain striking differences in the surface morphologies can be observed, indicating the importance of the laser-induced free-electron plasma in the conduction band of the solids for the formation of LIPSS. KW - Atomic force microscopy KW - Conduction bands KW - High-speed optical techniques KW - Laser beam effects KW - Scanning electron microscopy KW - Silicon compounds KW - Surface morphology PY - 2011 U6 - https://doi.org/10.1063/1.3605513 SN - 0021-8979 SN - 1089-7550 VL - 110 IS - 1 SP - 014910-1 - 014910-4 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-24049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -